miller/internal/pkg/bifs/arithmetic.go
John Kerl d341cc6dd3
DSL functions for summary stats over arrays / maps (#1364)
* DSL stats functions [WIP]

* refactor

* move percentile computation to bifs module; iterate

* mode and antimode

* percentile iterate

* percentile sketching

* neaten

* unit-test iterate

* unify old & new min & max functions

* unit-test cases

* code-dedupe between mode and antimode

* make mode/antimode ties deterministic via first-found-wins rule

* online help strings for new stats DSL functions

* artifacts from `make dev`

* help info on how min/max now recurse into collections

* artifacts from `make dev`

* typofix
2023-08-26 16:02:30 -04:00

1067 lines
42 KiB
Go

package bifs
import (
"math"
"github.com/johnkerl/miller/internal/pkg/lib"
"github.com/johnkerl/miller/internal/pkg/mlrval"
)
// ================================================================
// Unary plus operator
var upos_dispositions = [mlrval.MT_DIM]UnaryFunc{
/*INT */ _1u___,
/*FLOAT */ _1u___,
/*BOOL */ _erro1,
/*VOID */ _void1,
/*STRING */ _erro1,
/*ARRAY */ _absn1,
/*MAP */ _absn1,
/*FUNC */ _erro1,
/*ERROR */ _erro1,
/*NULL */ _null1,
/*ABSENT */ _absn1,
}
func BIF_plus_unary(input1 *mlrval.Mlrval) *mlrval.Mlrval {
return upos_dispositions[input1.Type()](input1)
}
// ================================================================
// Unary minus operator
func uneg_i_i(input1 *mlrval.Mlrval) *mlrval.Mlrval {
return mlrval.FromInt(-input1.AcquireIntValue())
}
func uneg_f_f(input1 *mlrval.Mlrval) *mlrval.Mlrval {
return mlrval.FromFloat(-input1.AcquireFloatValue())
}
var uneg_dispositions = [mlrval.MT_DIM]UnaryFunc{
/*INT */ uneg_i_i,
/*FLOAT */ uneg_f_f,
/*BOOL */ _erro1,
/*VOID */ _void1,
/*STRING */ _erro1,
/*ARRAY */ _absn1,
/*MAP */ _absn1,
/*FUNC */ _erro1,
/*ERROR */ _erro1,
/*NULL */ _null1,
/*ABSENT */ _absn1,
}
func BIF_minus_unary(input1 *mlrval.Mlrval) *mlrval.Mlrval {
return uneg_dispositions[input1.Type()](input1)
}
// ================================================================
// Addition with auto-overflow from int to float when necessary. See also
// https://miller.readthedocs.io/en/latest/reference-main-arithmetic
// Auto-overflows up to float. Additions & subtractions overflow by at most
// one bit so it suffices to check sign-changes.
func plus_n_ii(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
a := input1.AcquireIntValue()
b := input2.AcquireIntValue()
c := a + b
overflowed := false
if a > 0 {
if b > 0 && c < 0 {
overflowed = true
}
} else if a < 0 {
if b < 0 && c > 0 {
overflowed = true
}
}
if overflowed {
return mlrval.FromFloat(float64(a) + float64(b))
} else {
return mlrval.FromInt(c)
}
}
func plus_f_if(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return mlrval.FromFloat(float64(input1.AcquireIntValue()) + input2.AcquireFloatValue())
}
func plus_f_fi(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return mlrval.FromFloat(input1.AcquireFloatValue() + float64(input2.AcquireIntValue()))
}
func plus_f_ff(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return mlrval.FromFloat(input1.AcquireFloatValue() + input2.AcquireFloatValue())
}
var plus_dispositions = [mlrval.MT_DIM][mlrval.MT_DIM]BinaryFunc{
// . INT FLOAT BOOL VOID STRING ARRAY MAP FUNC ERROR NULL ABSENT
/*INT */ {plus_n_ii, plus_f_if, _erro, _void, _erro, _absn, _absn, _erro, _erro, _1___, _1___},
/*FLOAT */ {plus_f_fi, plus_f_ff, _erro, _void, _erro, _absn, _absn, _erro, _erro, _1___, _1___},
/*BOOL */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _erro},
/*VOID */ {_void, _void, _erro, _void, _erro, _absn, _absn, _erro, _erro, _erro, _absn},
/*STRING */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _erro},
/*ARRAY */ {_absn, _absn, _absn, _absn, _absn, _absn, _absn, _erro, _absn, _absn, _absn},
/*MAP */ {_absn, _absn, _absn, _absn, _absn, _absn, _absn, _erro, _absn, _absn, _absn},
/*FUNC */ {_erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro},
/*ERROR */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _erro},
/*NULL */ {_2___, _2___, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _null, _absn},
/*ABSENT */ {_2___, _2___, _erro, _absn, _erro, _absn, _absn, _erro, _erro, _absn, _absn},
}
func BIF_plus_binary(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return plus_dispositions[input1.Type()][input2.Type()](input1, input2)
}
// ================================================================
// Subtraction with auto-overflow from int to float when necessary. See also
// https://miller.readthedocs.io/en/latest/reference-main-arithmetic
// Adds & subtracts overflow by at most one bit so it suffices to check
// sign-changes.
func minus_n_ii(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
a := input1.AcquireIntValue()
b := input2.AcquireIntValue()
c := a - b
overflowed := false
if a > 0 {
if b < 0 && c < 0 {
overflowed = true
}
} else if a < 0 {
if b > 0 && c > 0 {
overflowed = true
}
}
if overflowed {
return mlrval.FromFloat(float64(a) - float64(b))
} else {
return mlrval.FromInt(c)
}
}
func minus_f_if(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return mlrval.FromFloat(float64(input1.AcquireIntValue()) - input2.AcquireFloatValue())
}
func minus_f_fi(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return mlrval.FromFloat(input1.AcquireFloatValue() - float64(input2.AcquireIntValue()))
}
func minus_f_ff(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return mlrval.FromFloat(input1.AcquireFloatValue() - input2.AcquireFloatValue())
}
var minus_dispositions = [mlrval.MT_DIM][mlrval.MT_DIM]BinaryFunc{
// . INT FLOAT BOOL VOID STRING ARRAY MAP FUNC ERROR NULL ABSENT
/*INT */ {minus_n_ii, minus_f_if, _erro, _void, _erro, _absn, _absn, _erro, _erro, _1___, _1___},
/*FLOAT */ {minus_f_fi, minus_f_ff, _erro, _void, _erro, _absn, _absn, _erro, _erro, _1___, _1___},
/*BOOL */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _erro},
/*VOID */ {_void, _void, _erro, _void, _erro, _absn, _absn, _erro, _erro, _erro, _absn},
/*STRING */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _erro},
/*ARRAY */ {_absn, _absn, _absn, _absn, _absn, _absn, _absn, _erro, _absn, _absn, _absn},
/*MAP */ {_absn, _absn, _absn, _absn, _absn, _absn, _absn, _erro, _absn, _absn, _absn},
/*FUNC */ {_erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro},
/*ERROR */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _erro},
/*NULL */ {_2___, _2___, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _null, _absn},
/*ABSENT */ {_2___, _2___, _erro, _absn, _erro, _absn, _absn, _erro, _erro, _absn, _absn},
}
func BIF_minus_binary(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return minus_dispositions[input1.Type()][input2.Type()](input1, input2)
}
// ================================================================
// Multiplication with auto-overflow from int to float when necessary. See
// https://miller.readthedocs.io/en/latest/reference-main-arithmetic
// Auto-overflows up to float.
//
// Unlike adds & subtracts which overflow by at most one bit, multiplies can
// overflow by a word size. Thus detecting sign-changes does not suffice to
// detect overflow. Instead we test whether the floating-point product exceeds
// the representable integer range. Now 64-bit integers have 64-bit precision
// while IEEE-doubles have only 52-bit mantissas -- so, 53 bits including
// implicit leading one.
//
// The following experiment explicitly demonstrates the resolution at this range:
//
// 64-bit integer 64-bit integer Casted to double Back to 64-bit
// in hex in decimal integer
// 0x7ffffffffffff9ff 9223372036854774271 9223372036854773760.000000 0x7ffffffffffff800
// 0x7ffffffffffffa00 9223372036854774272 9223372036854773760.000000 0x7ffffffffffff800
// 0x7ffffffffffffbff 9223372036854774783 9223372036854774784.000000 0x7ffffffffffffc00
// 0x7ffffffffffffc00 9223372036854774784 9223372036854774784.000000 0x7ffffffffffffc00
// 0x7ffffffffffffdff 9223372036854775295 9223372036854774784.000000 0x7ffffffffffffc00
// 0x7ffffffffffffe00 9223372036854775296 9223372036854775808.000000 0x8000000000000000
// 0x7ffffffffffffffe 9223372036854775806 9223372036854775808.000000 0x8000000000000000
// 0x7fffffffffffffff 9223372036854775807 9223372036854775808.000000 0x8000000000000000
//
// That is, we cannot check an integer product to see if it is greater than
// 2**63-1 (or is less than -2**63) using integer arithmetic (it may have
// already overflowed) *or* using double-precision (granularity). Instead we
// check if the absolute value of the product exceeds the largest representable
// double less than 2**63. (An alternative would be to do all integer multiplies
// using handcrafted multi-word 128-bit arithmetic).
func times_n_ii(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
a := input1.AcquireIntValue()
b := input2.AcquireIntValue()
c := float64(a) * float64(b)
if math.Abs(c) > 9223372036854774784.0 {
return mlrval.FromFloat(c)
} else {
return mlrval.FromInt(a * b)
}
}
func times_f_if(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return mlrval.FromFloat(float64(input1.AcquireIntValue()) * input2.AcquireFloatValue())
}
func times_f_fi(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return mlrval.FromFloat(input1.AcquireFloatValue() * float64(input2.AcquireIntValue()))
}
func times_f_ff(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return mlrval.FromFloat(input1.AcquireFloatValue() * input2.AcquireFloatValue())
}
var times_dispositions = [mlrval.MT_DIM][mlrval.MT_DIM]BinaryFunc{
// . INT FLOAT BOOL VOID STRING ARRAY MAP FUNC ERROR NULL ABSENT
/*INT */ {times_n_ii, times_f_if, _erro, _void, _erro, _absn, _absn, _erro, _erro, _1___, _1___},
/*FLOAT */ {times_f_fi, times_f_ff, _erro, _void, _erro, _absn, _absn, _erro, _erro, _1___, _1___},
/*BOOL */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _erro},
/*VOID */ {_void, _void, _erro, _void, _erro, _absn, _absn, _erro, _erro, _erro, _absn},
/*STRING */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _erro},
/*ARRAY */ {_absn, _absn, _absn, _absn, _absn, _absn, _absn, _erro, _absn, _absn, _absn},
/*MAP */ {_absn, _absn, _absn, _absn, _absn, _absn, _absn, _erro, _absn, _absn, _absn},
/*FUNC */ {_erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro},
/*ERROR */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _erro},
/*NULL */ {_2___, _2___, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _null, _absn},
/*ABSENT */ {_2___, _2___, _erro, _absn, _erro, _absn, _absn, _erro, _erro, _absn, _absn},
}
func BIF_times(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return times_dispositions[input1.Type()][input2.Type()](input1, input2)
}
// ================================================================
// Pythonic division. See also
// https://miller.readthedocs.io/en/latest/reference-main-arithmetic
//
// Int/int pairings don't produce overflow.
//
// IEEE-754 handles float overflow/underflow:
//
// $ echo 'x=1e-300,y=1e300' | mlr put '$z=$x*$y'
// x=1e-300,y=1e300,z=1
//
// $ echo 'x=1e-300,y=1e300' | mlr put '$z=$x/$y'
// x=1e-300,y=1e300,z=0
//
// $ echo 'x=1e-300,y=1e300' | mlr put '$z=$y/$x'
// x=1e-300,y=1e300,z=+Inf
func divide_n_ii(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
a := input1.AcquireIntValue()
b := input2.AcquireIntValue()
if b == 0 {
// Compute inf/nan as with floats rather than fatal runtime FPE on integer divide by zero
return mlrval.FromFloat(float64(a) / float64(b))
}
// Pythonic division, not C division.
if a%b == 0 {
return mlrval.FromInt(a / b)
} else {
return mlrval.FromFloat(float64(a) / float64(b))
}
}
func divide_f_if(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return mlrval.FromFloat(float64(input1.AcquireIntValue()) / input2.AcquireFloatValue())
}
func divide_f_fi(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return mlrval.FromFloat(input1.AcquireFloatValue() / float64(input2.AcquireIntValue()))
}
func divide_f_ff(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return mlrval.FromFloat(input1.AcquireFloatValue() / input2.AcquireFloatValue())
}
var divide_dispositions = [mlrval.MT_DIM][mlrval.MT_DIM]BinaryFunc{
// . INT FLOAT BOOL VOID STRING ARRAY MAP FUNC ERROR NULL ABSENT
/*INT */ {divide_n_ii, divide_f_if, _erro, _void, _erro, _absn, _absn, _erro, _erro, _1___, _1___},
/*FLOAT */ {divide_f_fi, divide_f_ff, _erro, _void, _erro, _absn, _absn, _erro, _erro, _1___, _1___},
/*BOOL */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _erro},
/*VOID */ {_void, _void, _erro, _void, _erro, _absn, _absn, _erro, _erro, _erro, _absn},
/*STRING */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _erro},
/*ARRAY */ {_absn, _absn, _absn, _absn, _absn, _absn, _absn, _erro, _absn, _absn, _absn},
/*MAP */ {_absn, _absn, _absn, _absn, _absn, _absn, _absn, _erro, _absn, _absn, _absn},
/*FUNC */ {_erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro},
/*ERROR */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _erro},
/*NULL */ {_i0__, _f0__, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _absn},
/*ABSENT */ {_i0__, _f0__, _erro, _absn, _erro, _absn, _absn, _erro, _erro, _absn, _absn},
}
func BIF_divide(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return divide_dispositions[input1.Type()][input2.Type()](input1, input2)
}
// ================================================================
// Integer division: DSL operator '//' as in Python. See also
// https://miller.readthedocs.io/en/latest/reference-main-arithmetic
func int_divide_n_ii(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
a := input1.AcquireIntValue()
b := input2.AcquireIntValue()
if b == 0 {
// Compute inf/nan as with floats rather than fatal runtime FPE on integer divide by zero
return mlrval.FromFloat(float64(a) / float64(b))
}
// Pythonic division, not C division.
q := a / b
r := a % b
if a < 0 {
if b > 0 {
if r != 0 {
q--
}
}
} else {
if b < 0 {
if r != 0 {
q--
}
}
}
return mlrval.FromInt(q)
}
func int_divide_f_if(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return mlrval.FromFloat(math.Floor(float64(input1.AcquireIntValue()) / input2.AcquireFloatValue()))
}
func int_divide_f_fi(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return mlrval.FromFloat(math.Floor(input1.AcquireFloatValue() / float64(input2.AcquireIntValue())))
}
func int_divide_f_ff(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return mlrval.FromFloat(math.Floor(input1.AcquireFloatValue() / input2.AcquireFloatValue()))
}
var int_divide_dispositions = [mlrval.MT_DIM][mlrval.MT_DIM]BinaryFunc{
// . INT FLOAT BOOL VOID STRING ARRAY MAP FUNC ERROR NULL ABSENT
/*INT */ {int_divide_n_ii, int_divide_f_if, _erro, _void, _erro, _absn, _absn, _erro, _erro, _erro, _1___},
/*FLOAT */ {int_divide_f_fi, int_divide_f_ff, _erro, _void, _erro, _absn, _absn, _erro, _erro, _erro, _1___},
/*BOOL */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _erro},
/*VOID */ {_void, _void, _erro, _void, _erro, _absn, _absn, _erro, _erro, _erro, _absn},
/*STRING */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _erro},
/*ARRAY */ {_absn, _absn, _absn, _absn, _absn, _absn, _absn, _erro, _absn, _absn, _absn},
/*MAP */ {_absn, _absn, _absn, _absn, _absn, _absn, _absn, _erro, _absn, _absn, _absn},
/*FUNC */ {_erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro},
/*ERROR */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _erro},
/*NULL */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _absn},
/*ABSENT */ {_i0__, _f0__, _erro, _absn, _erro, _absn, _absn, _erro, _erro, _absn, _absn},
}
func BIF_int_divide(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return int_divide_dispositions[input1.Type()][input2.Type()](input1, input2)
}
// ================================================================
// Non-auto-overflowing addition: DSL operator '.+'. See also
// https://miller.readthedocs.io/en/latest/reference-main-arithmetic
func dotplus_i_ii(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return mlrval.FromInt(input1.AcquireIntValue() + input2.AcquireIntValue())
}
func dotplus_f_if(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return mlrval.FromFloat(float64(input1.AcquireIntValue()) + input2.AcquireFloatValue())
}
func dotplus_f_fi(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return mlrval.FromFloat(input1.AcquireFloatValue() + float64(input2.AcquireIntValue()))
}
func dotplus_f_ff(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return mlrval.FromFloat(input1.AcquireFloatValue() + input2.AcquireFloatValue())
}
var dot_plus_dispositions = [mlrval.MT_DIM][mlrval.MT_DIM]BinaryFunc{
// . INT FLOAT BOOL VOID STRING ARRAY MAP FUNC ERROR NULL ABSENT
/*INT */ {dotplus_i_ii, dotplus_f_if, _erro, _void, _erro, _absn, _absn, _erro, _erro, _1___, _1___},
/*FLOAT */ {dotplus_f_fi, dotplus_f_ff, _erro, _void, _erro, _absn, _absn, _erro, _erro, _1___, _1___},
/*BOOL */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _erro},
/*VOID */ {_void, _void, _erro, _void, _erro, _absn, _absn, _erro, _erro, _erro, _absn},
/*STRING */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _erro},
/*ARRAY */ {_absn, _absn, _absn, _absn, _absn, _absn, _absn, _erro, _absn, _absn, _absn},
/*MAP */ {_absn, _absn, _absn, _absn, _absn, _absn, _absn, _erro, _absn, _absn, _absn},
/*FUNC */ {_erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro},
/*ERROR */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _erro},
/*NULL */ {_2___, _2___, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _null, _absn},
/*ABSENT */ {_2___, _2___, _erro, _absn, _erro, _absn, _absn, _erro, _erro, _absn, _absn},
}
func BIF_dot_plus(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return dot_plus_dispositions[input1.Type()][input2.Type()](input1, input2)
}
// ================================================================
// Non-auto-overflowing subtraction: DSL operator '.-'. See also
// https://miller.readthedocs.io/en/latest/reference-main-arithmetic
func dotminus_i_ii(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return mlrval.FromInt(input1.AcquireIntValue() - input2.AcquireIntValue())
}
func dotminus_f_if(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return mlrval.FromFloat(float64(input1.AcquireIntValue()) - input2.AcquireFloatValue())
}
func dotminus_f_fi(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return mlrval.FromFloat(input1.AcquireFloatValue() - float64(input2.AcquireIntValue()))
}
func dotminus_f_ff(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return mlrval.FromFloat(input1.AcquireFloatValue() - input2.AcquireFloatValue())
}
var dotminus_dispositions = [mlrval.MT_DIM][mlrval.MT_DIM]BinaryFunc{
// . INT FLOAT BOOL VOID STRING ARRAY MAP FUNC ERROR NULL ABSENT
/*INT */ {dotminus_i_ii, dotminus_f_if, _erro, _void, _erro, _absn, _absn, _erro, _erro, _1___, _1___},
/*FLOAT */ {dotminus_f_fi, dotminus_f_ff, _erro, _void, _erro, _absn, _absn, _erro, _erro, _1___, _1___},
/*BOOL */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _erro},
/*VOID */ {_void, _void, _erro, _void, _erro, _absn, _absn, _erro, _erro, _erro, _absn},
/*STRING */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _erro},
/*ARRAY */ {_absn, _absn, _absn, _absn, _absn, _absn, _absn, _erro, _absn, _absn, _absn},
/*MAP */ {_absn, _absn, _absn, _absn, _absn, _absn, _absn, _erro, _absn, _absn, _absn},
/*FUNC */ {_erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro},
/*ERROR */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _erro},
/*NULL */ {_n2__, _n2__, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _null, _absn},
/*ABSENT */ {_n2__, _n2__, _erro, _absn, _erro, _absn, _absn, _erro, _erro, _absn, _absn},
}
func BIF_dot_minus(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return dotminus_dispositions[input1.Type()][input2.Type()](input1, input2)
}
// ----------------------------------------------------------------
// Non-auto-overflowing multiplication: DSL operator '.*'. See also
// https://miller.readthedocs.io/en/latest/reference-main-arithmetic
func dottimes_i_ii(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return mlrval.FromInt(input1.AcquireIntValue() * input2.AcquireIntValue())
}
func dottimes_f_if(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return mlrval.FromFloat(float64(input1.AcquireIntValue()) * input2.AcquireFloatValue())
}
func dottimes_f_fi(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return mlrval.FromFloat(input1.AcquireFloatValue() * float64(input2.AcquireIntValue()))
}
func dottimes_f_ff(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return mlrval.FromFloat(input1.AcquireFloatValue() * input2.AcquireFloatValue())
}
var dottimes_dispositions = [mlrval.MT_DIM][mlrval.MT_DIM]BinaryFunc{
// . INT FLOAT BOOL VOID STRING ARRAY MAP FUNC ERROR NULL ABSENT
/*INT */ {dottimes_i_ii, dottimes_f_if, _erro, _void, _erro, _absn, _absn, _erro, _erro, _1___, _1___},
/*FLOAT */ {dottimes_f_fi, dottimes_f_ff, _erro, _void, _erro, _absn, _absn, _erro, _erro, _1___, _1___},
/*BOOL */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _erro},
/*VOID */ {_void, _void, _erro, _void, _erro, _absn, _absn, _erro, _erro, _erro, _absn},
/*STRING */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _erro},
/*ARRAY */ {_absn, _absn, _absn, _absn, _absn, _absn, _absn, _erro, _absn, _absn, _absn},
/*MAP */ {_absn, _absn, _absn, _absn, _absn, _absn, _absn, _erro, _absn, _absn, _absn},
/*FUNC */ {_erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro},
/*ERROR */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _erro},
/*NULL */ {_2___, _2___, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _absn},
/*ABSENT */ {_2___, _2___, _erro, _absn, _erro, _absn, _absn, _erro, _erro, _absn, _absn},
}
func BIF_dot_times(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return dottimes_dispositions[input1.Type()][input2.Type()](input1, input2)
}
// ----------------------------------------------------------------
// 64-bit integer division: DSL operator './'. See also
// https://miller.readthedocs.io/en/latest/reference-main-arithmetic
func dotdivide_i_ii(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return mlrval.FromInt(input1.AcquireIntValue() / input2.AcquireIntValue())
}
func dotdivide_f_if(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return mlrval.FromFloat(float64(input1.AcquireIntValue()) / input2.AcquireFloatValue())
}
func dotdivide_f_fi(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return mlrval.FromFloat(input1.AcquireFloatValue() / float64(input2.AcquireIntValue()))
}
func dotdivide_f_ff(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return mlrval.FromFloat(input1.AcquireFloatValue() / input2.AcquireFloatValue())
}
var dotdivide_dispositions = [mlrval.MT_DIM][mlrval.MT_DIM]BinaryFunc{
// . INT FLOAT BOOL VOID STRING ARRAY MAP FUNC ERROR NULL ABSENT
/*INT */ {dotdivide_i_ii, dotdivide_f_if, _erro, _void, _erro, _absn, _absn, _erro, _erro, _erro, _1___},
/*FLOAT */ {dotdivide_f_fi, dotdivide_f_ff, _erro, _void, _erro, _absn, _absn, _erro, _erro, _erro, _1___},
/*BOOL */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _erro},
/*VOID */ {_void, _void, _erro, _void, _erro, _absn, _absn, _erro, _erro, _erro, _absn},
/*STRING */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _erro},
/*ARRAY */ {_absn, _absn, _absn, _absn, _absn, _absn, _absn, _erro, _absn, _absn, _absn},
/*MAP */ {_absn, _absn, _absn, _absn, _absn, _absn, _absn, _erro, _absn, _absn, _absn},
/*FUNC */ {_erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro},
/*ERROR */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _erro},
/*NULL */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _absn},
/*ABSENT */ {_2___, _2___, _erro, _absn, _erro, _absn, _absn, _erro, _erro, _absn, _absn},
}
func BIF_dot_divide(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return dotdivide_dispositions[input1.Type()][input2.Type()](input1, input2)
}
// ----------------------------------------------------------------
// 64-bit integer division: DSL operator './/'. See also
// https://miller.readthedocs.io/en/latest/reference-main-arithmetic
func dotidivide_i_ii(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
a := input1.AcquireIntValue()
b := input2.AcquireIntValue()
if b == 0 {
// Compute inf/nan as with floats rather than fatal runtime FPE on integer divide by zero
return mlrval.FromFloat(float64(a) / float64(b))
}
// Pythonic division, not C division.
q := a / b
r := a % b
if a < 0 {
if b > 0 {
if r != 0 {
q--
}
}
} else {
if b < 0 {
if r != 0 {
q--
}
}
}
return mlrval.FromInt(q)
}
func dotidivide_f_if(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return mlrval.FromFloat(math.Floor(float64(input1.AcquireIntValue()) / input2.AcquireFloatValue()))
}
func dotidivide_f_fi(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return mlrval.FromFloat(math.Floor(input1.AcquireFloatValue() / float64(input2.AcquireIntValue())))
}
func dotidivide_f_ff(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return mlrval.FromFloat(math.Floor(input1.AcquireFloatValue() / input2.AcquireFloatValue()))
}
var dotidivide_dispositions = [mlrval.MT_DIM][mlrval.MT_DIM]BinaryFunc{
// . INT FLOAT BOOL VOID STRING ARRAY MAP FUNC ERROR NULL ABSENT
/*INT */ {dotidivide_i_ii, dotidivide_f_if, _erro, _void, _erro, _absn, _absn, _erro, _erro, _erro, _1___},
/*FLOAT */ {dotidivide_f_fi, dotidivide_f_ff, _erro, _void, _erro, _absn, _absn, _erro, _erro, _erro, _1___},
/*BOOL */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _erro},
/*VOID */ {_void, _void, _erro, _void, _erro, _absn, _absn, _erro, _erro, _erro, _absn},
/*STRING */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _erro},
/*ARRAY */ {_absn, _absn, _absn, _absn, _absn, _absn, _absn, _erro, _absn, _absn, _absn},
/*MAP */ {_absn, _absn, _absn, _absn, _absn, _absn, _absn, _erro, _absn, _absn, _absn},
/*FUNC */ {_erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro},
/*ERROR */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _erro},
/*NULL */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _absn},
/*ABSENT */ {_2___, _2___, _erro, _absn, _erro, _absn, _absn, _erro, _erro, _erro, _absn},
}
func BIF_dot_int_divide(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return dotidivide_dispositions[input1.Type()][input2.Type()](input1, input2)
}
// ----------------------------------------------------------------
// Modulus
func modulus_i_ii(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
a := input1.AcquireIntValue()
b := input2.AcquireIntValue()
if b == 0 {
// Compute inf/nan as with floats rather than fatal runtime FPE on integer divide by zero
return mlrval.FromFloat(float64(a) / float64(b))
}
// Pythonic division, not C division.
m := a % b
if a >= 0 {
if b < 0 {
m += b
}
} else {
if b >= 0 {
m += b
}
}
return mlrval.FromInt(m)
}
func modulus_f_fi(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
a := input1.AcquireFloatValue()
b := float64(input2.AcquireIntValue())
return mlrval.FromFloat(a - b*math.Floor(a/b))
}
func modulus_f_if(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
a := float64(input1.AcquireIntValue())
b := input2.AcquireFloatValue()
return mlrval.FromFloat(a - b*math.Floor(a/b))
}
func modulus_f_ff(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
a := input1.AcquireFloatValue()
b := input2.AcquireFloatValue()
return mlrval.FromFloat(a - b*math.Floor(a/b))
}
var modulus_dispositions = [mlrval.MT_DIM][mlrval.MT_DIM]BinaryFunc{
// . INT FLOAT BOOL VOID STRING ARRAY MAP FUNC ERROR NULL ABSENT
/*INT */ {modulus_i_ii, modulus_f_if, _erro, _void, _erro, _absn, _absn, _erro, _erro, _erro, _1___},
/*FLOAT */ {modulus_f_fi, modulus_f_ff, _erro, _void, _erro, _absn, _absn, _erro, _erro, _erro, _1___},
/*BOOL */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _erro},
/*VOID */ {_void, _void, _erro, _void, _erro, _absn, _absn, _erro, _erro, _erro, _absn},
/*STRING */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _erro},
/*ARRAY */ {_absn, _absn, _absn, _absn, _absn, _absn, _absn, _erro, _absn, _absn, _absn},
/*MAP */ {_absn, _absn, _absn, _absn, _absn, _absn, _absn, _erro, _absn, _absn, _absn},
/*FUNC */ {_erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro},
/*ERROR */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _erro},
/*NULL */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _absn},
/*ABSENT */ {_i0__, _f0__, _erro, _absn, _erro, _absn, _absn, _erro, _erro, _absn, _absn},
}
func BIF_modulus(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return modulus_dispositions[input1.Type()][input2.Type()](input1, input2)
}
// ================================================================
// Pythonic
func mlrmod(a, m int64) int64 {
retval := a % m
if retval < 0 {
retval += m
}
return retval
}
type i_iii_func func(a, b, m int64) int64
func imodadd(a, b, m int64) int64 {
return mlrmod(a+b, m)
}
func imodsub(a, b, m int64) int64 {
return mlrmod(a-b, m)
}
func imodmul(a, b, m int64) int64 {
return mlrmod(a*b, m)
}
func imodexp(a, e, m int64) int64 {
if e == 0 {
return 1
}
if e == 1 {
return a
}
// Repeated-squaring algorithm.
// We assume our caller has verified the exponent is not negative.
apower := a
c := int64(1)
u := uint64(e)
for u != 0 {
if (u & 1) == 1 {
c = mlrmod(c*apower, m)
}
u >>= 1
apower = mlrmod(apower*apower, m)
}
return c
}
func imodop(input1, input2, input3 *mlrval.Mlrval, iop i_iii_func) *mlrval.Mlrval {
if !input1.IsLegit() {
return input1
}
if !input2.IsLegit() {
return input2
}
if !input3.IsLegit() {
return input3
}
if !input1.IsInt() {
return mlrval.ERROR
}
if !input2.IsInt() {
return mlrval.ERROR
}
if !input3.IsInt() {
return mlrval.ERROR
}
return mlrval.FromInt(iop(input1.AcquireIntValue(), input2.AcquireIntValue(), input3.AcquireIntValue()))
}
func BIF_mod_add(input1, input2, input3 *mlrval.Mlrval) *mlrval.Mlrval {
return imodop(input1, input2, input3, imodadd)
}
func BIF_mod_sub(input1, input2, input3 *mlrval.Mlrval) *mlrval.Mlrval {
return imodop(input1, input2, input3, imodsub)
}
func BIF_mod_mul(input1, input2, input3 *mlrval.Mlrval) *mlrval.Mlrval {
return imodop(input1, input2, input3, imodmul)
}
func BIF_mod_exp(input1, input2, input3 *mlrval.Mlrval) *mlrval.Mlrval {
// Pre-check for negative exponent
if input2.IsInt() && input2.AcquireIntValue() < 0 {
return mlrval.ERROR
}
return imodop(input1, input2, input3, imodexp)
}
// ================================================================
// MIN AND MAX
// Sort rules (same for min, max, and comparator):
// * NUMERICS < BOOL < STRINGS < ERROR < ABSENT
// * error == error (singleton type)
// * absent == absent (singleton type)
// * string compares on strings
// * numeric compares on numbers
// * false < true
// Exceptions for min & max:
// * absent-null always loses
// * empty-null always loses against numbers
// ----------------------------------------------------------------
func min_f_ff(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
var a float64 = input1.AcquireFloatValue()
var b float64 = input2.AcquireFloatValue()
return mlrval.FromFloat(math.Min(a, b))
}
func min_f_fi(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
var a float64 = input1.AcquireFloatValue()
var b float64 = float64(input2.AcquireIntValue())
return mlrval.FromFloat(math.Min(a, b))
}
func min_f_if(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
var a float64 = float64(input1.AcquireIntValue())
var b float64 = input2.AcquireFloatValue()
return mlrval.FromFloat(math.Min(a, b))
}
func min_i_ii(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
var a int64 = input1.AcquireIntValue()
var b int64 = input2.AcquireIntValue()
if a < b {
return input1
} else {
return input2
}
}
// min | b=F b=T
// --- + ----- -----
// a=F | min=a min=a
// a=T | min=b min=b
func min_b_bb(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
if input1.AcquireBoolValue() == false {
return input1
} else {
return input2
}
}
func min_s_ss(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
var a string = input1.AcquireStringValue()
var b string = input2.AcquireStringValue()
if a < b {
return input1
} else {
return input2
}
}
var min_dispositions = [mlrval.MT_DIM][mlrval.MT_DIM]BinaryFunc{
// . INT FLOAT BOOL VOID STRING ARRAY MAP FUNC ERROR NULL ABSENT
/*INT */ {min_i_ii, min_f_if, _1___, _1___, _1___, _absn, _absn, _erro, _erro, _1___, _1___},
/*FLOAT */ {min_f_fi, min_f_ff, _1___, _1___, _1___, _absn, _absn, _erro, _erro, _1___, _1___},
/*BOOL */ {_2___, _2___, min_b_bb, _1___, _1___, _absn, _absn, _erro, _erro, _1___, _1___},
/*VOID */ {_2___, _2___, _2___, _void, _void, _absn, _absn, _erro, _erro, _1___, _1___},
/*STRING */ {_2___, _2___, _2___, _void, min_s_ss, _absn, _absn, _erro, _erro, _1___, _1___},
/*ARRAY */ {_absn, _absn, _absn, _absn, _absn, _absn, _absn, _erro, _absn, _absn, _absn},
/*MAP */ {_absn, _absn, _absn, _absn, _absn, _absn, _absn, _erro, _absn, _absn, _absn},
/*FUNC */ {_erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro},
/*ERROR */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _erro, _erro},
/*NULL */ {_2___, _2___, _2___, _2___, _2___, _absn, _absn, _erro, _erro, _null, _null},
/*ABSENT */ {_2___, _2___, _2___, _2___, _2___, _absn, _absn, _erro, _erro, _null, _absn},
}
// BIF_min_binary is not a direct DSL function. It's a helper here,
// and is also exposed publicly for use by the stats1 verb.
func BIF_min_binary(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return (min_dispositions[input1.Type()][input2.Type()])(input1, input2)
}
func BIF_min_variadic(mlrvals []*mlrval.Mlrval) *mlrval.Mlrval {
if len(mlrvals) == 0 {
return mlrval.VOID
}
return mlrval.ArrayFold(
mlrvals,
bif_min_unary(mlrvals[0]),
func(a, b *mlrval.Mlrval) *mlrval.Mlrval {
return BIF_min_binary(bif_min_unary(a), bif_min_unary(b))
},
)
}
func BIF_min_within_map_values(m *mlrval.Mlrmap) *mlrval.Mlrval {
if m.Head == nil {
return mlrval.VOID
}
return mlrval.MapFold(
m,
m.Head.Value,
func(a, b *mlrval.Mlrval) *mlrval.Mlrval {
return BIF_min_binary(a, b)
},
)
}
// bif_min_unary allows recursion into arguments, so users can do either
// min(1,2,3) or min([1,2,3]).
func bif_min_unary_array(input1 *mlrval.Mlrval) *mlrval.Mlrval {
return BIF_min_variadic(input1.AcquireArrayValue())
}
func bif_min_unary_map(input1 *mlrval.Mlrval) *mlrval.Mlrval {
return BIF_min_within_map_values(input1.AcquireMapValue())
}
// We get a Golang "initialization loop" due to recursive depth computation
// if this is defined statically. So, we use a "package init" function.
var min_unary_dispositions = [mlrval.MT_DIM]UnaryFunc{}
func init() {
min_unary_dispositions = [mlrval.MT_DIM]UnaryFunc{
/*INT */ _1u___,
/*FLOAT */ _1u___,
/*BOOL */ _1u___,
/*VOID */ _1u___,
/*STRING */ _1u___,
/*ARRAY */ bif_min_unary_array,
/*MAP */ bif_min_unary_map,
/*FUNC */ _erro1,
/*ERROR */ _erro1,
/*NULL */ _null1,
/*ABSENT */ _absn1,
}
}
func bif_min_unary(input1 *mlrval.Mlrval) *mlrval.Mlrval {
return min_unary_dispositions[input1.Type()](input1)
}
// ----------------------------------------------------------------
func BIF_minlen_variadic(mlrvals []*mlrval.Mlrval) *mlrval.Mlrval {
if len(mlrvals) == 0 {
return mlrval.VOID
}
// Do the bulk arithmetic on native ints not Mlrvals, to avoid unnecessary allocation.
retval := lib.UTF8Strlen(mlrvals[0].OriginalString())
for i, _ := range mlrvals {
clen := lib.UTF8Strlen(mlrvals[i].OriginalString())
if clen < retval {
retval = clen
}
}
return mlrval.FromInt(retval)
}
func BIF_minlen_within_map_values(m *mlrval.Mlrmap) *mlrval.Mlrval {
if m.Head == nil {
return mlrval.VOID
}
// Do the bulk arithmetic on native ints not Mlrvals, to avoid unnecessary allocation.
retval := lib.UTF8Strlen(m.Head.Value.OriginalString())
for pe := m.Head.Next; pe != nil; pe = pe.Next {
clen := lib.UTF8Strlen(pe.Value.OriginalString())
if clen < retval {
retval = clen
}
}
return mlrval.FromInt(retval)
}
// ----------------------------------------------------------------
func max_f_ff(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
var a float64 = input1.AcquireFloatValue()
var b float64 = input2.AcquireFloatValue()
return mlrval.FromFloat(math.Max(a, b))
}
func max_f_fi(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
var a float64 = input1.AcquireFloatValue()
var b float64 = float64(input2.AcquireIntValue())
return mlrval.FromFloat(math.Max(a, b))
}
func max_f_if(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
var a float64 = float64(input1.AcquireIntValue())
var b float64 = input2.AcquireFloatValue()
return mlrval.FromFloat(math.Max(a, b))
}
func max_i_ii(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
var a int64 = input1.AcquireIntValue()
var b int64 = input2.AcquireIntValue()
if a > b {
return input1
} else {
return input2
}
}
// max | b=F b=T
// --- + ----- -----
// a=F | max=a max=b
// a=T | max=a max=b
func max_b_bb(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
if input2.AcquireBoolValue() == false {
return input1
} else {
return input2
}
}
func max_s_ss(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
var a string = input1.AcquireStringValue()
var b string = input2.AcquireStringValue()
if a > b {
return input1
} else {
return input2
}
}
var max_dispositions = [mlrval.MT_DIM][mlrval.MT_DIM]BinaryFunc{
// . INT FLOAT BOOL VOID STRING ARRAY MAP FUNC ERROR NULL ABSENT
/*INT */ {max_i_ii, max_f_if, _2___, _2___, _2___, _absn, _absn, _erro, _erro, _null, _1___},
/*FLOAT */ {max_f_fi, max_f_ff, _2___, _2___, _2___, _absn, _absn, _erro, _erro, _null, _1___},
/*BOOL */ {_1___, _1___, max_b_bb, _2___, _2___, _absn, _absn, _erro, _erro, _null, _1___},
/*VOID */ {_1___, _1___, _1___, _void, _2___, _absn, _absn, _erro, _erro, _null, _1___},
/*STRING */ {_1___, _1___, _1___, _1___, max_s_ss, _absn, _absn, _erro, _erro, _null, _1___},
/*ARRAY */ {_absn, _absn, _absn, _absn, _absn, _absn, _absn, _erro, _absn, _absn, _absn},
/*MAP */ {_absn, _absn, _absn, _absn, _absn, _absn, _absn, _erro, _absn, _absn, _absn},
/*FUNC */ {_erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro, _erro},
/*ERROR */ {_erro, _erro, _erro, _erro, _erro, _absn, _absn, _erro, _erro, _null, _erro},
/*NULL */ {_null, _null, _null, _null, _null, _absn, _absn, _erro, _null, _null, _absn},
/*ABSENT */ {_2___, _2___, _2___, _2___, _2___, _absn, _absn, _erro, _erro, _absn, _absn},
}
// BIF_max_binary is not a direct DSL function. It's a helper here,
// and is also exposed publicly for use by the stats1 verb.
func BIF_max_binary(input1, input2 *mlrval.Mlrval) *mlrval.Mlrval {
return (max_dispositions[input1.Type()][input2.Type()])(input1, input2)
}
func BIF_max_variadic(mlrvals []*mlrval.Mlrval) *mlrval.Mlrval {
if len(mlrvals) == 0 {
return mlrval.VOID
}
return mlrval.ArrayFold(
mlrvals,
bif_max_unary(mlrvals[0]),
func(a, b *mlrval.Mlrval) *mlrval.Mlrval {
return BIF_max_binary(bif_max_unary(a), bif_max_unary(b))
},
)
}
func BIF_max_within_map_values(m *mlrval.Mlrmap) *mlrval.Mlrval {
if m.Head == nil {
return mlrval.VOID
}
return mlrval.MapFold(
m,
m.Head.Value,
func(a, b *mlrval.Mlrval) *mlrval.Mlrval {
return BIF_max_binary(a, b)
},
)
}
// bif_max_unary allows recursion into arguments, so users can do either
// max(1,2,3) or max([1,2,3]).
func bif_max_unary_array(input1 *mlrval.Mlrval) *mlrval.Mlrval {
return BIF_max_variadic(input1.AcquireArrayValue())
}
func bif_max_unary_map(input1 *mlrval.Mlrval) *mlrval.Mlrval {
return BIF_max_within_map_values(input1.AcquireMapValue())
}
// We get a Golang "initialization loop" due to recursive depth computation
// if this is defined statically. So, we use a "package init" function.
var max_unary_dispositions = [mlrval.MT_DIM]UnaryFunc{}
func init() {
max_unary_dispositions = [mlrval.MT_DIM]UnaryFunc{
/*INT */ _1u___,
/*FLOAT */ _1u___,
/*BOOL */ _1u___,
/*VOID */ _1u___,
/*STRING */ _1u___,
/*ARRAY */ bif_max_unary_array,
/*MAP */ bif_max_unary_map,
/*FUNC */ _erro1,
/*ERROR */ _erro1,
/*NULL */ _null1,
/*ABSENT */ _absn1,
}
}
func bif_max_unary(input1 *mlrval.Mlrval) *mlrval.Mlrval {
return max_unary_dispositions[input1.Type()](input1)
}
// ----------------------------------------------------------------
func BIF_maxlen_variadic(mlrvals []*mlrval.Mlrval) *mlrval.Mlrval {
if len(mlrvals) == 0 {
return mlrval.VOID
}
// Do the bulk arithmetic on native ints not Mlrvals, to avoid unnecessary allocation.
retval := lib.UTF8Strlen(mlrvals[0].OriginalString())
for i, _ := range mlrvals {
clen := lib.UTF8Strlen(mlrvals[i].OriginalString())
if clen > retval {
retval = clen
}
}
return mlrval.FromInt(retval)
}
func BIF_maxlen_within_map_values(m *mlrval.Mlrmap) *mlrval.Mlrval {
if m.Head == nil {
return mlrval.VOID
}
// Do the bulk arithmetic on native ints not Mlrvals, to avoid unnecessary allocation.
retval := lib.UTF8Strlen(m.Head.Value.OriginalString())
for pe := m.Head.Next; pe != nil; pe = pe.Next {
clen := lib.UTF8Strlen(pe.Value.OriginalString())
if clen > retval {
retval = clen
}
}
return mlrval.FromInt(retval)
}