miller/docs6/programs/mand.mlr
2021-05-24 00:11:53 -04:00

100 lines
2.6 KiB
Text

# Mandelbrot set generator: simple example of Miller DSL as programming language.
begin {
# Set defaults
@rcorn = -2.0;
@icorn = -2.0;
@side = 4.0;
@iheight = 50;
@iwidth = 100;
@maxits = 100;
@levelstep = 5;
@chars = "@X*o-."; # Palette of characters to print to the screen.
@verbose = false;
@do_julia = false;
@jr = 0.0; # Real part of Julia point, if any
@ji = 0.0; # Imaginary part of Julia point, if any
}
# Here, we can override defaults from an input file (if any). In Miller's
# put/filter DSL, absent-null right-hand sides result in no assignment so we
# can simply put @rcorn = $rcorn: if there is a field in the input like
# 'rcorn = -1.847' we'll read and use it, else we'll keep the default.
@rcorn = $rcorn;
@icorn = $icorn;
@side = $side;
@iheight = $iheight;
@iwidth = $iwidth;
@maxits = $maxits;
@levelstep = $levelstep;
@chars = $chars;
@verbose = $verbose;
@do_julia = $do_julia;
@jr = $jr;
@ji = $ji;
end {
if (@verbose) {
print "RCORN = ".@rcorn;
print "ICORN = ".@icorn;
print "SIDE = ".@side;
print "IHEIGHT = ".@iheight;
print "IWIDTH = ".@iwidth;
print "MAXITS = ".@maxits;
print "LEVELSTEP = ".@levelstep;
print "CHARS = ".@chars;
}
# Iterate over a matrix of rows and columns, printing one character for each cell.
for (int ii = @iheight-1; ii >= 0; ii -= 1) {
num pi = @icorn + (ii/@iheight) * @side;
for (int ir = 0; ir < @iwidth; ir += 1) {
num pr = @rcorn + (ir/@iwidth) * @side;
printn get_point_plot(pr, pi, @maxits, @do_julia, @jr, @ji);
}
print;
}
}
# This is a function to approximate membership in the Mandelbrot set (or Julia
# set for a given Julia point if do_julia == true) for a given point in the
# complex plane.
func get_point_plot(pr, pi, maxits, do_julia, jr, ji) {
num zr = 0.0;
num zi = 0.0;
num cr = 0.0;
num ci = 0.0;
if (!do_julia) {
zr = 0.0;
zi = 0.0;
cr = pr;
ci = pi;
} else {
zr = pr;
zi = pi;
cr = jr;
ci = ji;
}
int iti = 0;
bool escaped = false;
num zt = 0;
for (iti = 0; iti < maxits; iti += 1) {
num mag = zr*zr + zi+zi;
if (mag > 4.0) {
escaped = true;
break;
}
# z := z^2 + c
zt = zr*zr - zi*zi + cr;
zi = 2*zr*zi + ci;
zr = zt;
}
if (!escaped) {
return ".";
} else {
# The // operator is Miller's (pythonic) integer-division operator
int level = (iti // @levelstep) % strlen(@chars);
return substr(@chars, level, level);
}
}