miller/internal/pkg/lib/stats.go
Stephen Kitt d536318ed6
Use int64 wherever "64-bit integer" is assumed (#902)
Miller assumes 64-bit integers, but in Go, the int type varies in size
depending on the architecture: 32-bit architectures have int
equivalent to int32. As a result, the supported range of integer
values is greatly reduced on 32-bit architectures compared to what is
suggested by the documentation.

This patch explicitly uses int64 wherever 64-bit integers are
assumed.

Test cases affected by the behaviour of the random generator are
updated to reflect the new values (the existing seed doesn't produce
the same behaviour since the way random values are generated has
changed).

Signed-off-by: Stephen Kitt <steve@sk2.org>
2022-01-27 12:06:25 -05:00

278 lines
7.5 KiB
Go

// ================================================================
// These are intended for streaming (i.e. single-pass) applications. Otherwise
// the formulas look different (and are more intuitive).
// ================================================================
package lib
import (
"math"
)
// ----------------------------------------------------------------
// Univariate linear regression
// ----------------------------------------------------------------
// There are N (xi, yi) pairs.
//
// minimize E = sum (yi - m xi - b)^2
//
// Set the two partial derivatives to zero and solve for m and b:
//
// DE/Dm = sum 2 (yi - m xi - b) (-xi) = 0
// DE/Db = sum 2 (yi - m xi - b) (-1) = 0
//
// sum (yi - m xi - b) (xi) = 0
// sum (yi - m xi - b) = 0
//
// sum (xi yi - m xi^2 - b xi) = 0
// sum (yi - m xi - b) = 0
//
// m sum(xi^2) + b sum(xi) = sum(xi yi)
// m sum(xi) + b N = sum(yi)
//
// [ sum(xi^2) sum(xi) ] [ m ] = [ sum(xi yi) ]
// [ sum(xi) N ] [ b ] = [ sum(yi) ]
//
// [ m ] = [ sum(xi^2) sum(xi) ]^-1 [ sum(xi yi) ]
// [ b ] [ sum(xi) N ] [ sum(yi) ]
//
// = [ N -sum(xi) ] [ sum(xi yi) ] * 1/D
// [ -sum(xi) sum(xi^2)] [ sum(yi) ]
//
// where
//
// D = N sum(xi^2) - sum(xi)^2.
//
// So
//
// N sum(xi yi) - sum(xi) sum(yi)
// m = --------------------------------
// D
//
// -sum(xi)sum(xi yi) + sum(xi^2) sum(yi)
// b = ----------------------------------------
// D
//
// ----------------------------------------------------------------
func GetLinearRegressionOLS(
nint int64,
sumx float64,
sumx2 float64,
sumxy float64,
sumy float64,
) (m, b float64) {
n := float64(nint)
D := n*sumx2 - sumx*sumx
m = (n*sumxy - sumx*sumy) / D
b = (-sumx*sumxy + sumx2*sumy) / D
return m, b
}
// We would need a second pass through the data to compute the error-bars given
// the data and the m and the b.
//
// # Young 1962, pp. 122-124. Compute sample variance of linear
// # approximations, then variances of m and b.
// var_z = 0.0
// for i in range(0, N):
// var_z += (m * xs[i] + b - ys[i])**2
// var_z /= N
//
// var_m = (N * var_z) / D
// var_b = (var_z * sumx2) / D
//
// output = [m, b, math.sqrt(var_m), math.sqrt(var_b)]
// ----------------------------------------------------------------
// GetVar is the finalizing function for computing variance from streamed
// accumulator values.
func GetVar(
nint int64,
sumx float64,
sumx2 float64,
) float64 {
n := float64(nint)
mean := sumx / n
numerator := sumx2 - mean*(2.0*sumx-n*mean)
if numerator < 0.0 { // round-off error
numerator = 0.0
}
denominator := n - 1.0
return numerator / denominator
}
// ----------------------------------------------------------------
// Unbiased estimator:
// (1/n) sum{(xi-mean)**3}
// -----------------------------
// [(1/(n-1)) sum{(xi-mean)**2}]**1.5
// mean = sumx / n; n mean = sumx
// sum{(xi-mean)^3}
// = sum{xi^3 - 3 mean xi^2 + 3 mean^2 xi - mean^3}
// = sum{xi^3} - 3 mean sum{xi^2} + 3 mean^2 sum{xi} - n mean^3
// = sumx3 - 3 mean sumx2 + 3 mean^2 sumx - n mean^3
// = sumx3 - 3 mean sumx2 + 3n mean^3 - n mean^3
// = sumx3 - 3 mean sumx2 + 2n mean^3
// = sumx3 - mean*(3 sumx2 + 2n mean^2)
// sum{(xi-mean)^2}
// = sum{xi^2 - 2 mean xi + mean^2}
// = sum{xi^2} - 2 mean sum{xi} + n mean^2
// = sumx2 - 2 mean sumx + n mean^2
// = sumx2 - 2 n mean^2 + n mean^2
// = sumx2 - n mean^2
// ----------------------------------------------------------------
// GetSkewness is the finalizing function for computing skewness from streamed
// accumulator values.
func GetSkewness(
nint int,
sumx float64,
sumx2 float64,
sumx3 float64,
) float64 {
n := float64(nint)
mean := sumx / n
numerator := sumx3 - mean*(3*sumx2-2*n*mean*mean)
numerator = numerator / n
denominator := (sumx2 - n*mean*mean) / (n - 1)
denominator = math.Pow(denominator, 1.5)
return numerator / denominator
}
// ----------------------------------------------------------------
// Unbiased:
// (1/n) sum{(x-mean)**4}
// ----------------------- - 3
// [(1/n) sum{(x-mean)**2}]**2
// sum{(xi-mean)^4}
// = sum{xi^4 - 4 mean xi^3 + 6 mean^2 xi^2 - 4 mean^3 xi + mean^4}
// = sum{xi^4} - 4 mean sum{xi^3} + 6 mean^2 sum{xi^2} - 4 mean^3 sum{xi} + n mean^4
// = sum{xi^4} - 4 mean sum{xi^3} + 6 mean^2 sum{xi^2} - 4 n mean^4 + n mean^4
// = sum{xi^4} - 4 mean sum{xi^3} + 6 mean^2 sum{xi^2} - 3 n mean^4
// = sum{xi^4} - mean*(4 sum{xi^3} - 6 mean sum{xi^2} + 3 n mean^3)
// = sumx4 - mean*(4 sumx3 - 6 mean sumx2 + 3 n mean^3)
// = sumx4 - mean*(4 sumx3 - mean*(6 sumx2 - 3 n mean^2))
func GetKurtosis(
nint int,
sumx float64,
sumx2 float64,
sumx3 float64,
sumx4 float64,
) float64 {
n := float64(nint)
mean := sumx / n
numerator := sumx4 - mean*(4*sumx3-mean*(6*sumx2-3*n*mean*mean))
numerator = numerator / n
denominator := (sumx2 - n*mean*mean) / n
denominator = denominator * denominator
return numerator/denominator - 3.0
}
// ----------------------------------------------------------------
// Non-streaming implementation:
//
// def find_sample_covariance(xs, ys):
// n = len(xs)
// mean_x = find_mean(xs)
// mean_y = find_mean(ys)
//
// sum = 0.0
// for k in range(0, n):
// sum += (xs[k] - mean_x) * (ys[k] - mean_y)
//
// return sum / (n-1.0)
func GetCov(
nint int64,
sumx float64,
sumy float64,
sumxy float64,
) float64 {
n := float64(nint)
meanx := sumx / n
meany := sumy / n
numerator := sumxy - meanx*sumy - meany*sumx + n*meanx*meany
denominator := n - 1
return numerator / denominator
}
// ----------------------------------------------------------------
func GetCovMatrix(
nint int64,
sumx float64,
sumx2 float64,
sumy float64,
sumy2 float64,
sumxy float64,
) (Q [2][2]float64) {
n := float64(nint)
denominator := n - 1
Q[0][0] = (sumx2 - sumx*sumx/n) / denominator
Q[0][1] = (sumxy - sumx*sumy/n) / denominator
Q[1][0] = Q[0][1]
Q[1][1] = (sumy2 - sumy*sumy/n) / denominator
return Q
}
// ----------------------------------------------------------------
// Principal component analysis can be used for linear regression:
//
// * Compute the covariance matrix for the x's and y's.
//
// * Find its eigenvalues and eigenvectors of the cov. (This is real-symmetric
// so Jacobi iteration is simple and fine.)
//
// * The principal eigenvector points in the direction of the fit.
//
// * The covariance matrix is computed on zero-mean data so the intercept
// is zero. The fit equation is of the form (y - nu) = m*(x - mu) where mu
// and nu are x and y means, respectively.
//
// * If the fit is perfect then the 2nd eigenvalue will be zero; if the fit is
// good then the 2nd eigenvalue will be smaller; if the fit is bad then
// they'll be about the same. I use 1 - |lambda2|/|lambda1| as an indication
// of quality of the fit.
//
// Standard ("ordinary least-squares") linear regression is appropriate when
// the errors are thought to be all in the y's. PCA ("total least-squares") is
// appropriate when the x's and the y's are thought to both have errors.
func GetLinearRegressionPCA(
eigenvalue_1 float64,
eigenvalue_2 float64,
eigenvector_1 [2]float64,
eigenvector_2 [2]float64,
x_mean float64,
y_mean float64,
) (m, b, quality float64) {
abs_1 := math.Abs(eigenvalue_1)
abs_2 := math.Abs(eigenvalue_2)
quality = 1.0
if abs_1 == 0.0 {
quality = 0.0
} else if abs_2 > 0.0 {
quality = 1.0 - abs_2/abs_1
}
a0 := eigenvector_1[0]
a1 := eigenvector_1[1]
m = a1 / a0
b = y_mean - m*x_mean
return m, b, quality
}