Reference: list of verbs

Overview

Whereas the Unix toolkit is made of the separate executables cat, tail, cut, sort, etc., Miller has subcommands, or verbs, invoked as follows:

mlr tac *.dat
mlr cut --complement -f os_version *.dat
mlr sort -f hostname,uptime *.dat

These fall into categories as follows:

altkv

Map list of values to alternating key/value pairs.

 mlr altkv -h
 Usage: mlr altkv [options]
 Given fields with values of the form a,b,c,d,e,f emits a=b,c=d,e=f pairs.
 Options:
 -h|--help Show this message.
 echo 'a,b,c,d,e,f' | mlr altkv
 a=b,c=d,e=f
 echo 'a,b,c,d,e,f,g' | mlr altkv
 a=b,c=d,e=f,4=g

bar

Cheesy bar-charting.

 mlr bar -h
 Usage: mlr bar [options]
 Replaces a numeric field with a number of asterisks, allowing for cheesy
 bar plots. These align best with --opprint or --oxtab output format.
 Options:
 -f   {a,b,c}      Field names to convert to bars.
 --lo {lo}         Lower-limit value for min-width bar: default '0.000000'.
 --hi {hi}         Upper-limit value for max-width bar: default '100.000000'.
 -w   {n}          Bar-field width: default '40'.
 --auto            Automatically computes limits, ignoring --lo and --hi.
                   Holds all records in memory before producing any output.
 -c   {character}  Fill character: default '*'.
 -x   {character}  Out-of-bounds character: default '#'.
 -b   {character}  Blank character: default '.'.
 Nominally the fill, out-of-bounds, and blank characters will be strings of length 1.
 However you can make them all longer if you so desire.
 -h|--help Show this message.
 mlr --opprint cat data/small
 a   b   i x                   y
 pan pan 1 0.3467901443380824  0.7268028627434533
 eks pan 2 0.7586799647899636  0.5221511083334797
 wye wye 3 0.20460330576630303 0.33831852551664776
 eks wye 4 0.38139939387114097 0.13418874328430463
 wye pan 5 0.5732889198020006  0.8636244699032729
 mlr --opprint bar --lo 0 --hi 1 -f x,y data/small
 a   b   i x                                        y
 pan pan 1 *************........................... *****************************...........
 eks pan 2 ******************************.......... ********************....................
 wye wye 3 ********................................ *************...........................
 eks wye 4 ***************......................... *****...................................
 wye pan 5 **********************.................. **********************************......
 mlr --opprint bar --lo 0.4 --hi 0.6 -f x,y data/small
 a   b   i x                                        y
 pan pan 1 #....................................... ***************************************#
 eks pan 2 ***************************************# ************************................
 wye wye 3 #....................................... #.......................................
 eks wye 4 #....................................... #.......................................
 wye pan 5 **********************************...... ***************************************#
 mlr --opprint bar --auto -f x,y data/small
 a   b   i x                                                                                 y
 pan pan 1 [0.20460330576630303]**********..............................[0.7586799647899636] [0.13418874328430463]********************************........[0.8636244699032729]
 eks pan 2 [0.20460330576630303]***************************************#[0.7586799647899636] [0.13418874328430463]*********************...................[0.8636244699032729]
 wye wye 3 [0.20460330576630303]#.......................................[0.7586799647899636] [0.13418874328430463]***********.............................[0.8636244699032729]
 eks wye 4 [0.20460330576630303]************............................[0.7586799647899636] [0.13418874328430463]#.......................................[0.8636244699032729]
 wye pan 5 [0.20460330576630303]**************************..............[0.7586799647899636] [0.13418874328430463]***************************************#[0.8636244699032729]

bootstrap

 mlr bootstrap --help
 Usage: mlr bootstrap [options]
 Emits an n-sample, with replacement, of the input records.
 See also mlr sample and mlr shuffle.
 Options:
  -n Number of samples to output. Defaults to number of input records.
     Must be non-negative.
 -h|--help Show this message.

The canonical use for bootstrap sampling is to put error bars on statistical quantities, such as mean. For example:

 mlr --opprint stats1 -a mean,count -f u -g color data/colored-shapes.dkvp
 color  u_mean   u_count
 yellow 0.497129 1413
 red    0.492560 4641
 purple 0.494005 1142
 green  0.504861 1109
 blue   0.517717 1470
 orange 0.490532 303
 mlr --opprint bootstrap then stats1 -a mean,count -f u -g color data/colored-shapes.dkvp
 color  u_mean   u_count
 yellow 0.500651 1380
 purple 0.501556 1111
 green  0.503272 1068
 red    0.493895 4702
 blue   0.512529 1496
 orange 0.521030 321
 mlr --opprint bootstrap then stats1 -a mean,count -f u -g color data/colored-shapes.dkvp
 color  u_mean   u_count
 yellow 0.498046 1485
 blue   0.513576 1417
 red    0.492870 4595
 orange 0.507697 307
 green  0.496803 1075
 purple 0.486337 1199
 mlr --opprint bootstrap then stats1 -a mean,count -f u -g color data/colored-shapes.dkvp
 color  u_mean   u_count
 blue   0.522921 1447
 red    0.490717 4617
 yellow 0.496450 1419
 purple 0.496523 1192
 green  0.507569 1111
 orange 0.468014 292

cat

Most useful for format conversions (see File formats, and concatenating multiple same-schema CSV files to have the same header:

 mlr cat -h
 Usage: mlr cat [options]
 Passes input records directly to output. Most useful for format conversion.
 Options:
 -n         Prepend field "n" to each record with record-counter starting at 1.
 -N {name}  Prepend field {name} to each record with record-counter starting at 1.
 -g {a,b,c} Optional group-by-field names for counters, e.g. a,b,c
 -h|--help Show this message.
 cat data/a.csv
 a,b,c
 1,2,3
 4,5,6
 cat data/b.csv
 a,b,c
 7,8,9
 mlr --csv cat data/a.csv data/b.csv
 a,b,c
 1,2,3
 4,5,6
 7,8,9
 mlr --icsv --oxtab cat data/a.csv data/b.csv
 a 1
 b 2
 c 3

 a 4
 b 5
 c 6

 a 7
 b 8
 c 9
 mlr --csv cat -n data/a.csv data/b.csv
 n,a,b,c
 1,1,2,3
 2,4,5,6
 3,7,8,9
 mlr --opprint cat data/small
 a   b   i x                   y
 pan pan 1 0.3467901443380824  0.7268028627434533
 eks pan 2 0.7586799647899636  0.5221511083334797
 wye wye 3 0.20460330576630303 0.33831852551664776
 eks wye 4 0.38139939387114097 0.13418874328430463
 wye pan 5 0.5732889198020006  0.8636244699032729
 mlr --opprint cat -n -g a data/small
 n a   b   i x                   y
 1 pan pan 1 0.3467901443380824  0.7268028627434533
 1 eks pan 2 0.7586799647899636  0.5221511083334797
 1 wye wye 3 0.20460330576630303 0.33831852551664776
 2 eks wye 4 0.38139939387114097 0.13418874328430463
 2 wye pan 5 0.5732889198020006  0.8636244699032729

check

 mlr check --help
 Usage: mlr check [options]
 Consumes records without printing any output.
 Useful for doing a well-formatted check on input data.
 Options:
 -h|--help Show this message.

clean-whitespace

 mlr clean-whitespace --help
 Usage: mlr clean-whitespace [options]
 For each record, for each field in the record, whitespace-cleans the keys and/or
 values. Whitespace-cleaning entails stripping leading and trailing whitespace,
 and replacing multiple whitespace with singles. For finer-grained control,
 please see the DSL functions lstrip, rstrip, strip, collapse_whitespace,
 and clean_whitespace.

 Options:
 -k|--keys-only    Do not touch values.
 -v|--values-only  Do not touch keys.
 It is an error to specify -k as well as -v -- to clean keys and values,
 leave off -k as well as -v.
 -h|--help Show this message.
 mlr --icsv --ojson cat data/clean-whitespace.csv
 {
   "  Name  ": "  Ann  Simons",
   " Preference  ": "  blue  "
 }
 {
   "  Name  ": "Bob Wang  ",
   " Preference  ": " red       "
 }
 {
   "  Name  ": " Carol  Vee",
   " Preference  ": "    yellow"
 }
 mlr --icsv --ojson clean-whitespace -k data/clean-whitespace.csv
 {
   "Name": "  Ann  Simons",
   "Preference": "  blue  "
 }
 {
   "Name": "Bob Wang  ",
   "Preference": " red       "
 }
 {
   "Name": " Carol  Vee",
   "Preference": "    yellow"
 }
 mlr --icsv --ojson clean-whitespace -v data/clean-whitespace.csv
 {
   "  Name  ": "Ann Simons",
   " Preference  ": "blue"
 }
 {
   "  Name  ": "Bob Wang",
   " Preference  ": "red"
 }
 {
   "  Name  ": "Carol Vee",
   " Preference  ": "yellow"
 }
 mlr --icsv --ojson clean-whitespace data/clean-whitespace.csv
 {
   "Name": "Ann Simons",
   "Preference": "blue"
 }
 {
   "Name": "Bob Wang",
   "Preference": "red"
 }
 {
   "Name": "Carol Vee",
   "Preference": "yellow"
 }

Function links:

count

 mlr count --help
 Usage: mlr count [options]
 Prints number of records, optionally grouped by distinct values for specified field names.
 Options:
 -g {a,b,c} Optional group-by-field names for counts, e.g. a,b,c
 -n {n} Show only the number of distinct values. Not interesting without -g.
 -o {name} Field name for output-count. Default "count".
 -h|--help Show this message.
 mlr count data/medium
 count=10000
 mlr count -g a data/medium
 a=pan,count=2081
 a=eks,count=1965
 a=wye,count=1966
 a=zee,count=2047
 a=hat,count=1941
 mlr count -n -g a data/medium
 count=5
 mlr count -g b data/medium
 b=pan,count=1942
 b=wye,count=2057
 b=zee,count=1943
 b=eks,count=2008
 b=hat,count=2050
 mlr count -n -g b data/medium
 count=5
 mlr count -g a,b data/medium
 a=pan,b=pan,count=427
 a=eks,b=pan,count=371
 a=wye,b=wye,count=377
 a=eks,b=wye,count=407
 a=wye,b=pan,count=392
 a=zee,b=pan,count=389
 a=eks,b=zee,count=357
 a=zee,b=wye,count=455
 a=hat,b=wye,count=423
 a=pan,b=wye,count=395
 a=zee,b=eks,count=391
 a=hat,b=zee,count=385
 a=hat,b=eks,count=389
 a=wye,b=hat,count=426
 a=pan,b=eks,count=429
 a=eks,b=eks,count=413
 a=hat,b=hat,count=381
 a=hat,b=pan,count=363
 a=zee,b=zee,count=403
 a=pan,b=hat,count=417
 a=pan,b=zee,count=413
 a=zee,b=hat,count=409
 a=wye,b=zee,count=385
 a=eks,b=hat,count=417
 a=wye,b=eks,count=386

count-distinct

 mlr count-distinct --help
 Usage: mlr count-distinct [options]
 Prints number of records having distinct values for specified field names.
 Same as uniq -c.

 Options:
 -f {a,b,c}    Field names for distinct count.
 -n            Show only the number of distinct values. Not compatible with -u.
 -o {name}     Field name for output count. Default "count".
               Ignored with -u.
 -u            Do unlashed counts for multiple field names. With -f a,b and
               without -u, computes counts for distinct combinations of a
               and b field values. With -f a,b and with -u, computes counts
               for distinct a field values and counts for distinct b field
               values separately.
 mlr count-distinct -f a,b then sort -nr count data/medium
 a=zee,b=wye,count=455
 a=pan,b=eks,count=429
 a=pan,b=pan,count=427
 a=wye,b=hat,count=426
 a=hat,b=wye,count=423
 a=pan,b=hat,count=417
 a=eks,b=hat,count=417
 a=eks,b=eks,count=413
 a=pan,b=zee,count=413
 a=zee,b=hat,count=409
 a=eks,b=wye,count=407
 a=zee,b=zee,count=403
 a=pan,b=wye,count=395
 a=wye,b=pan,count=392
 a=zee,b=eks,count=391
 a=zee,b=pan,count=389
 a=hat,b=eks,count=389
 a=wye,b=eks,count=386
 a=hat,b=zee,count=385
 a=wye,b=zee,count=385
 a=hat,b=hat,count=381
 a=wye,b=wye,count=377
 a=eks,b=pan,count=371
 a=hat,b=pan,count=363
 a=eks,b=zee,count=357
 mlr count-distinct -u -f a,b data/medium
 field=a,value=pan,count=2081
 field=a,value=eks,count=1965
 field=a,value=wye,count=1966
 field=a,value=zee,count=2047
 field=a,value=hat,count=1941
 field=b,value=pan,count=1942
 field=b,value=wye,count=2057
 field=b,value=zee,count=1943
 field=b,value=eks,count=2008
 field=b,value=hat,count=2050
 mlr count-distinct -f a,b -o someothername then sort -nr someothername data/medium
 a=zee,b=wye,someothername=455
 a=pan,b=eks,someothername=429
 a=pan,b=pan,someothername=427
 a=wye,b=hat,someothername=426
 a=hat,b=wye,someothername=423
 a=pan,b=hat,someothername=417
 a=eks,b=hat,someothername=417
 a=eks,b=eks,someothername=413
 a=pan,b=zee,someothername=413
 a=zee,b=hat,someothername=409
 a=eks,b=wye,someothername=407
 a=zee,b=zee,someothername=403
 a=pan,b=wye,someothername=395
 a=wye,b=pan,someothername=392
 a=zee,b=eks,someothername=391
 a=zee,b=pan,someothername=389
 a=hat,b=eks,someothername=389
 a=wye,b=eks,someothername=386
 a=hat,b=zee,someothername=385
 a=wye,b=zee,someothername=385
 a=hat,b=hat,someothername=381
 a=wye,b=wye,someothername=377
 a=eks,b=pan,someothername=371
 a=hat,b=pan,someothername=363
 a=eks,b=zee,someothername=357
 mlr count-distinct -n -f a,b data/medium
 count=25

count-similar

 mlr count-similar --help
 Usage: mlr count-similar [options]
 Ingests all records, then emits each record augmented by a count of
 the number of other records having the same group-by field values.
 Options:
 -g {a,b,c} Group-by-field names for counts, e.g. a,b,c
 -o {name} Field name for output-counts. Defaults to "count".
 -h|--help Show this message.
 mlr --opprint head -n 20 data/medium
 a   b   i  x                   y
 pan pan 1  0.3467901443380824  0.7268028627434533
 eks pan 2  0.7586799647899636  0.5221511083334797
 wye wye 3  0.20460330576630303 0.33831852551664776
 eks wye 4  0.38139939387114097 0.13418874328430463
 wye pan 5  0.5732889198020006  0.8636244699032729
 zee pan 6  0.5271261600918548  0.49322128674835697
 eks zee 7  0.6117840605678454  0.1878849191181694
 zee wye 8  0.5985540091064224  0.976181385699006
 hat wye 9  0.03144187646093577 0.7495507603507059
 pan wye 10 0.5026260055412137  0.9526183602969864
 pan pan 11 0.7930488423451967  0.6505816637259333
 zee pan 12 0.3676141320555616  0.23614420670296965
 eks pan 13 0.4915175580479536  0.7709126592971468
 eks zee 14 0.5207382318405251  0.34141681118811673
 eks pan 15 0.07155556372719507 0.3596137145616235
 pan pan 16 0.5736853980681922  0.7554169353781729
 zee eks 17 0.29081949506712723 0.054478717073354166
 hat zee 18 0.05727869223575699 0.13343527626645157
 zee pan 19 0.43144132839222604 0.8442204830496998
 eks wye 20 0.38245149780530685 0.4730652428100751
 mlr --opprint head -n 20 then count-similar -g a data/medium
 a   b   i  x                   y                    count
 pan pan 1  0.3467901443380824  0.7268028627434533   4
 pan wye 10 0.5026260055412137  0.9526183602969864   4
 pan pan 11 0.7930488423451967  0.6505816637259333   4
 pan pan 16 0.5736853980681922  0.7554169353781729   4
 eks pan 2  0.7586799647899636  0.5221511083334797   7
 eks wye 4  0.38139939387114097 0.13418874328430463  7
 eks zee 7  0.6117840605678454  0.1878849191181694   7
 eks pan 13 0.4915175580479536  0.7709126592971468   7
 eks zee 14 0.5207382318405251  0.34141681118811673  7
 eks pan 15 0.07155556372719507 0.3596137145616235   7
 eks wye 20 0.38245149780530685 0.4730652428100751   7
 wye wye 3  0.20460330576630303 0.33831852551664776  2
 wye pan 5  0.5732889198020006  0.8636244699032729   2
 zee pan 6  0.5271261600918548  0.49322128674835697  5
 zee wye 8  0.5985540091064224  0.976181385699006    5
 zee pan 12 0.3676141320555616  0.23614420670296965  5
 zee eks 17 0.29081949506712723 0.054478717073354166 5
 zee pan 19 0.43144132839222604 0.8442204830496998   5
 hat wye 9  0.03144187646093577 0.7495507603507059   2
 hat zee 18 0.05727869223575699 0.13343527626645157  2
 mlr --opprint head -n 20 then count-similar -g a then sort -f a data/medium
 a   b   i  x                   y                    count
 eks pan 2  0.7586799647899636  0.5221511083334797   7
 eks wye 4  0.38139939387114097 0.13418874328430463  7
 eks zee 7  0.6117840605678454  0.1878849191181694   7
 eks pan 13 0.4915175580479536  0.7709126592971468   7
 eks zee 14 0.5207382318405251  0.34141681118811673  7
 eks pan 15 0.07155556372719507 0.3596137145616235   7
 eks wye 20 0.38245149780530685 0.4730652428100751   7
 hat wye 9  0.03144187646093577 0.7495507603507059   2
 hat zee 18 0.05727869223575699 0.13343527626645157  2
 pan pan 1  0.3467901443380824  0.7268028627434533   4
 pan wye 10 0.5026260055412137  0.9526183602969864   4
 pan pan 11 0.7930488423451967  0.6505816637259333   4
 pan pan 16 0.5736853980681922  0.7554169353781729   4
 wye wye 3  0.20460330576630303 0.33831852551664776  2
 wye pan 5  0.5732889198020006  0.8636244699032729   2
 zee pan 6  0.5271261600918548  0.49322128674835697  5
 zee wye 8  0.5985540091064224  0.976181385699006    5
 zee pan 12 0.3676141320555616  0.23614420670296965  5
 zee eks 17 0.29081949506712723 0.054478717073354166 5
 zee pan 19 0.43144132839222604 0.8442204830496998   5

cut

 mlr cut --help
 Usage: mlr cut [options]
 Passes through input records with specified fields included/excluded.
 Options:
  -f {a,b,c} Comma-separated field names for cut, e.g. a,b,c.
  -o Retain fields in the order specified here in the argument list.
     Default is to retain them in the order found in the input data.
  -x|--complement  Exclude, rather than include, field names specified by -f.
  -r Treat field names as regular expressions. "ab", "a.*b" will
    match any field name containing the substring "ab" or matching
    "a.*b", respectively; anchors of the form "^ab$", "^a.*b$" may
    be used. The -o flag is ignored when -r is present.
 -h|--help Show this message.
 Examples:
   mlr cut -f hostname,status
   mlr cut -x -f hostname,status
   mlr cut -r -f '^status$,sda[0-9]'
   mlr cut -r -f '^status$,"sda[0-9]"'
   mlr cut -r -f '^status$,"sda[0-9]"i' (this is case-insensitive)
 mlr --opprint cat data/small
 a   b   i x                   y
 pan pan 1 0.3467901443380824  0.7268028627434533
 eks pan 2 0.7586799647899636  0.5221511083334797
 wye wye 3 0.20460330576630303 0.33831852551664776
 eks wye 4 0.38139939387114097 0.13418874328430463
 wye pan 5 0.5732889198020006  0.8636244699032729
 mlr --opprint cut -f y,x,i data/small
 i x                   y
 1 0.3467901443380824  0.7268028627434533
 2 0.7586799647899636  0.5221511083334797
 3 0.20460330576630303 0.33831852551664776
 4 0.38139939387114097 0.13418874328430463
 5 0.5732889198020006  0.8636244699032729
 echo 'a=1,b=2,c=3' | mlr cut -f b,c,a
 a=1,b=2,c=3
 echo 'a=1,b=2,c=3' | mlr cut -o -f b,c,a
 b=2,c=3,a=1

decimate

 mlr decimate --help
 Usage: mlr decimate [options]
 Passes through one of every n records, optionally by category.
 Options:
  -b Decimate by printing first of every n.
  -e Decimate by printing last of every n (default).
  -g {a,b,c} Optional group-by-field names for decimate counts, e.g. a,b,c.
  -n {n} Decimation factor (default 10).
 -h|--help Show this message.

fill-down

 mlr fill-down --help
 Usage: mlr fill-down [options]
 If a given record has a missing value for a given field, fill that from
 the corresponding value from a previous record, if any.
 By default, a 'missing' field either is absent, or has the empty-string value.
 With -a, a field is 'missing' only if it is absent.

 Options:
  --all Operate on all fields in the input.
  -a|--only-if-absent If a given record has a missing value for a given field,
      fill that from the corresponding value from a previous record, if any.
      By default, a 'missing' field either is absent, or has the empty-string value.
      With -a, a field is 'missing' only if it is absent.
  -f  Field names for fill-down.
  -h|--help Show this message.
 cat data/fill-down.csv
 a,b,c
 1,,3
 4,5,6
 7,,9
 mlr --csv fill-down -f b data/fill-down.csv
 a,b,c
 1,,3
 4,5,6
 7,5,9
 mlr --csv fill-down -a -f b data/fill-down.csv
 a,b,c
 1,,3
 4,5,6
 7,,9

filter

 mlr filter --help
 Usage: mlr put [options] {DSL expression}
 Options:
 -f {file name} File containing a DSL expression. If the filename is a directory,
    all *.mlr files in that directory are loaded.

 -e {expression} You can use this after -f to add an expression. Example use
    case: define functions/subroutines in a file you specify with -f, then call
    them with an expression you specify with -e.

 (If you mix -e and -f then the expressions are evaluated in the order encountered.
 Since the expression pieces are simply concatenated, please be sure to use intervening
 semicolons to separate expressions.)

 -s name=value: Predefines out-of-stream variable @name to have
     Thus mlr put -s foo=97 '$column += @foo' is like
     mlr put 'begin {@foo = 97} $column += @foo'.
     The value part is subject to type-inferencing.
     May be specified more than once, e.g. -s name1=value1 -s name2=value2.
     Note: the value may be an environment variable, e.g. -s sequence=$SEQUENCE

 -x (default false) Prints records for which {expression} evaluates to false, not true,
    i.e. invert the sense of the filter expression.

 -q Does not include the modified record in the output stream.
    Useful for when all desired output is in begin and/or end blocks.

 -S and -F: There are no-ops in Miller 6 and above, since now type-inferencing is done
    by the record-readers before filter/put is executed. Supported as no-op pass-through
    flags for backward compatibility.

 -h|--help Show this message.

 Parser-info options:

 -w Print warnings about things like uninitialized variables.

 -W Same as -w, but exit the process if there are any warnings.

 -p Prints the expressions's AST (abstract syntax tree), which gives full
   transparency on the precedence and associativity rules of Miller's grammar,
   to stdout.

 -d Like -p but uses a parenthesized-expression format for the AST.

 -D Like -d but with output all on one line.

 -E Echo DSL expression before printing parse-tree

 -v Same as -E -p.

 -X Exit after parsing but before stream-processing. Useful with -v/-d/-D, if you
    only want to look at parser information.

Features which filter shares with put

Please see DSL reference: overview for more information about the expression language for mlr filter.

format-values

 mlr format-values --help
 Usage: mlr format-values [options]
 Applies format strings to all field values, depending on autodetected type.
 * If a field value is detected to be integer, applies integer format.
 * Else, if a field value is detected to be float, applies float format.
 * Else, applies string format.

 Note: this is a low-keystroke way to apply formatting to many fields. To get
 finer control, please see the fmtnum function within the mlr put DSL.

 Note: this verb lets you apply arbitrary format strings, which can produce
 undefined behavior and/or program crashes.  See your system's "man printf".

 Options:
 -i {integer format} Defaults to "%d".
                     Examples: "%06lld", "%08llx".
                     Note that Miller integers are long long so you must use
                     formats which apply to long long, e.g. with ll in them.
                     Undefined behavior results otherwise.
 -f {float format}   Defaults to "%f".
                     Examples: "%8.3lf", "%.6le".
                     Note that Miller floats are double-precision so you must
                     use formats which apply to double, e.g. with l[efg] in them.
                     Undefined behavior results otherwise.
 -s {string format}  Defaults to "%s".
                     Examples: "_%s", "%08s".
                     Note that you must use formats which apply to string, e.g.
                     with s in them. Undefined behavior results otherwise.
 -n                  Coerce field values autodetected as int to float, and then
                     apply the float format.
 mlr --opprint format-values data/small
 a   b   i x        y
 pan pan 1 0.346790 0.726803
 eks pan 2 0.758680 0.522151
 wye wye 3 0.204603 0.338319
 eks wye 4 0.381399 0.134189
 wye pan 5 0.573289 0.863624
 mlr --opprint format-values -n data/small
 a   b   i        x        y
 pan pan 1.000000 0.346790 0.726803
 eks pan 2.000000 0.758680 0.522151
 wye wye 3.000000 0.204603 0.338319
 eks wye 4.000000 0.381399 0.134189
 wye pan 5.000000 0.573289 0.863624
 mlr --opprint format-values -i %08llx -f %.6le -s X%sX data/small
 a     b     i                   x                      y
 XpanX XpanX %!l(int=00000001)lx %!l(float64=0.34679)e  %!l(float64=0.726803)e
 XeksX XpanX %!l(int=00000002)lx %!l(float64=0.75868)e  %!l(float64=0.522151)e
 XwyeX XwyeX %!l(int=00000003)lx %!l(float64=0.204603)e %!l(float64=0.338319)e
 XeksX XwyeX %!l(int=00000004)lx %!l(float64=0.381399)e %!l(float64=0.134189)e
 XwyeX XpanX %!l(int=00000005)lx %!l(float64=0.573289)e %!l(float64=0.863624)e
 mlr --opprint format-values -i %08llx -f %.6le -s X%sX -n data/small
 a     b     i               x                      y
 XpanX XpanX %!l(float64=1)e %!l(float64=0.34679)e  %!l(float64=0.726803)e
 XeksX XpanX %!l(float64=2)e %!l(float64=0.75868)e  %!l(float64=0.522151)e
 XwyeX XwyeX %!l(float64=3)e %!l(float64=0.204603)e %!l(float64=0.338319)e
 XeksX XwyeX %!l(float64=4)e %!l(float64=0.381399)e %!l(float64=0.134189)e
 XwyeX XpanX %!l(float64=5)e %!l(float64=0.573289)e %!l(float64=0.863624)e

fraction

 mlr fraction --help
 Usage: mlr fraction [options]
 For each record's value in specified fields, computes the ratio of that
 value to the sum of values in that field over all input records.
 E.g. with input records  x=1  x=2  x=3  and  x=4, emits output records
 x=1,x_fraction=0.1  x=2,x_fraction=0.2  x=3,x_fraction=0.3  and  x=4,x_fraction=0.4

 Note: this is internally a two-pass algorithm: on the first pass it retains
 input records and accumulates sums; on the second pass it computes quotients
 and emits output records. This means it produces no output until all input is read.

 Options:
 -f {a,b,c}    Field name(s) for fraction calculation
 -g {d,e,f}    Optional group-by-field name(s) for fraction counts
 -p            Produce percents [0..100], not fractions [0..1]. Output field names
               end with "_percent" rather than "_fraction"
 -c            Produce cumulative distributions, i.e. running sums: each output
               value folds in the sum of the previous for the specified group
               E.g. with input records  x=1  x=2  x=3  and  x=4, emits output records
               x=1,x_cumulative_fraction=0.1  x=2,x_cumulative_fraction=0.3
               x=3,x_cumulative_fraction=0.6  and  x=4,x_cumulative_fraction=1.0

For example, suppose you have the following CSV file:

u=female,v=red,n=2458
u=female,v=green,n=192
u=female,v=blue,n=337
u=female,v=purple,n=468
u=female,v=yellow,n=3
u=female,v=orange,n=17
u=male,v=red,n=143
u=male,v=green,n=227
u=male,v=blue,n=2034
u=male,v=purple,n=12
u=male,v=yellow,n=1192
u=male,v=orange,n=448

Then we can see what each record’s n contributes to the total n:

 mlr --opprint fraction -f n data/fraction-example.csv
 u      v      n    n_fraction
 female red    2458 0.32638427831629263
 female green  192  0.025494622228123754
 female blue   337  0.04474837338998805
 female purple 468  0.06214314168105165
 female yellow 3    0.00039835347231443366
 female orange 17   0.002257336343115124
 male   red    143  0.018988182180321337
 male   green  227  0.03014207940512548
 male   blue   2034 0.270083654229186
 male   purple 12   0.0015934138892577346
 male   yellow 1192 0.15827911299960165
 male   orange 448  0.0594874518656221

Using -g we can split those out by gender, or by color:

 mlr --opprint fraction -f n -g u data/fraction-example.csv
 u      v      n    n_fraction
 female red    2458 0.7073381294964028
 female green  192  0.05525179856115108
 female blue   337  0.09697841726618706
 female purple 468  0.13467625899280575
 female yellow 3    0.0008633093525179857
 female orange 17   0.004892086330935252
 male   red    143  0.035256410256410256
 male   green  227  0.05596646942800789
 male   blue   2034 0.5014792899408284
 male   purple 12   0.0029585798816568047
 male   yellow 1192 0.2938856015779093
 male   orange 448  0.11045364891518737
 mlr --opprint fraction -f n -g v data/fraction-example.csv
 u      v      n    n_fraction
 female red    2458 0.9450211457131872
 female green  192  0.45823389021479716
 female blue   337  0.1421341206242092
 female purple 468  0.975
 female yellow 3    0.002510460251046025
 female orange 17   0.03655913978494624
 male   red    143  0.05497885428681276
 male   green  227  0.5417661097852029
 male   blue   2034 0.8578658793757908
 male   purple 12   0.025
 male   yellow 1192 0.9974895397489539
 male   orange 448  0.9634408602150538

We can see, for example, that 70.9% of females have red (on the left) while 94.5% of reds are for females.

To convert fractions to percents, you may use -p:

 mlr --opprint fraction -f n -p data/fraction-example.csv
 u      v      n    n_percent
 female red    2458 32.638427831629265
 female green  192  2.5494622228123753
 female blue   337  4.474837338998805
 female purple 468  6.214314168105165
 female yellow 3    0.039835347231443365
 female orange 17   0.2257336343115124
 male   red    143  1.8988182180321338
 male   green  227  3.014207940512548
 male   blue   2034 27.0083654229186
 male   purple 12   0.15934138892577346
 male   yellow 1192 15.827911299960165
 male   orange 448  5.94874518656221

Another often-used idiom is to convert from a point distribution to a cumulative distribution, also known as “running sums”. Here, you can use -c:

 mlr --opprint fraction -f n -p -c data/fraction-example.csv
 u      v      n    n_cumulative_percent
 female red    2458 32.638427831629265
 female green  192  35.18789005444164
 female blue   337  39.66272739344044
 female purple 468  45.87704156154561
 female yellow 3    45.916876908777056
 female orange 17   46.142610543088566
 male   red    143  48.041428761120706
 male   green  227  51.05563670163325
 male   blue   2034 78.06400212455186
 male   purple 12   78.22334351347763
 male   yellow 1192 94.0512548134378
 male   orange 448  100
 mlr --opprint fraction -f n -g u -p -c data/fraction-example.csv
 u      v      n    n_cumulative_percent
 female red    2458 70.73381294964028
 female green  192  76.2589928057554
 female blue   337  85.9568345323741
 female purple 468  99.42446043165467
 female yellow 3    99.51079136690647
 female orange 17   100
 male   red    143  3.5256410256410255
 male   green  227  9.122287968441814
 male   blue   2034 59.27021696252466
 male   purple 12   59.56607495069034
 male   yellow 1192 88.95463510848126
 male   orange 448  100

grep

 mlr grep -h
 Usage: mlr grep [options] {regular expression}
 Passes through records which match the regular expression.
 Options:
 -i  Use case-insensitive search.
 -v  Invert: pass through records which do not match the regex.
 -h|--help Show this message.
 Note that "mlr filter" is more powerful, but requires you to know field names.
 By contrast, "mlr grep" allows you to regex-match the entire record. It does
 this by formatting each record in memory as DKVP, using command-line-specified
 ORS/OFS/OPS, and matching the resulting line against the regex specified
 here. In particular, the regex is not applied to the input stream: if you
 have CSV with header line "x,y,z" and data line "1,2,3" then the regex will
 be matched, not against either of these lines, but against the DKVP line
 "x=1,y=2,z=3".  Furthermore, not all the options to system grep are supported,
 and this command is intended to be merely a keystroke-saver. To get all the
 features of system grep, you can do
   "mlr --odkvp ... | grep ... | mlr --idkvp ..."

group-by

 mlr group-by --help
 Usage: mlr group-by [options] {comma-separated field names}
 Outputs records in batches having identical values at specified field names.Options:
 -h|--help Show this message.

This is similar to sort but with less work. Namely, Miller’s sort has three steps: read through the data and append linked lists of records, one for each unique combination of the key-field values; after all records are read, sort the key-field values; then print each record-list. The group-by operation simply omits the middle sort. An example should make this more clear.

 mlr --opprint group-by a data/small
 a   b   i x                   y
 pan pan 1 0.3467901443380824  0.7268028627434533
 eks pan 2 0.7586799647899636  0.5221511083334797
 eks wye 4 0.38139939387114097 0.13418874328430463
 wye wye 3 0.20460330576630303 0.33831852551664776
 wye pan 5 0.5732889198020006  0.8636244699032729
 mlr --opprint sort -f a data/small
 a   b   i x                   y
 eks pan 2 0.7586799647899636  0.5221511083334797
 eks wye 4 0.38139939387114097 0.13418874328430463
 pan pan 1 0.3467901443380824  0.7268028627434533
 wye wye 3 0.20460330576630303 0.33831852551664776
 wye pan 5 0.5732889198020006  0.8636244699032729

In this example, since the sort is on field a, the first step is to group together all records having the same value for field a; the second step is to sort the distinct a-field values pan, eks, and wye into eks, pan, and wye; the third step is to print out the record-list for a=eks, then the record-list for a=pan, then the record-list for a=wye. The group-by operation omits the middle sort and just puts like records together, for those times when a sort isn’t desired. In particular, the ordering of group-by fields for group-by is the order in which they were encountered in the data stream, which in some cases may be more interesting to you.

group-like

 mlr group-like --help
 Usage: mlr group-like [options]
 Outputs records in batches having identical field names.Options:
 -h|--help Show this message.

This groups together records having the same schema (i.e. same ordered list of field names) which is useful for making sense of time-ordered output as described in Record-heterogeneity – in particular, in preparation for CSV or pretty-print output.

 mlr cat data/het.dkvp
 resource=/path/to/file,loadsec=0.45,ok=true
 record_count=100,resource=/path/to/file
 resource=/path/to/second/file,loadsec=0.32,ok=true
 record_count=150,resource=/path/to/second/file
 resource=/some/other/path,loadsec=0.97,ok=false
 mlr --opprint group-like data/het.dkvp
 resource             loadsec ok
 /path/to/file        0.45    true
 /path/to/second/file 0.32    true
 /some/other/path     0.97    false

 record_count resource
 100          /path/to/file
 150          /path/to/second/file

having-fields

 mlr having-fields --help
 Usage: mlr having-fields [options]
 Conditionally passes through records depending on each record's field names.
 Options:
   --at-least      {comma-separated names}
   --which-are     {comma-separated names}
   --at-most       {comma-separated names}
   --all-matching  {regular expression}
   --any-matching  {regular expression}
   --none-matching {regular expression}
 Examples:
   mlr having-fields --which-are amount,status,owner
   mlr having-fields --any-matching 'sda[0-9]'
   mlr having-fields --any-matching '"sda[0-9]"'
   mlr having-fields --any-matching '"sda[0-9]"i' (this is case-insensitive)

Similar to group-like, this retains records with specified schema.

 mlr cat data/het.dkvp
 resource=/path/to/file,loadsec=0.45,ok=true
 record_count=100,resource=/path/to/file
 resource=/path/to/second/file,loadsec=0.32,ok=true
 record_count=150,resource=/path/to/second/file
 resource=/some/other/path,loadsec=0.97,ok=false
 mlr having-fields --at-least resource data/het.dkvp
 resource=/path/to/file,loadsec=0.45,ok=true
 record_count=100,resource=/path/to/file
 resource=/path/to/second/file,loadsec=0.32,ok=true
 record_count=150,resource=/path/to/second/file
 resource=/some/other/path,loadsec=0.97,ok=false
 mlr having-fields --which-are resource,ok,loadsec data/het.dkvp
 resource=/path/to/file,loadsec=0.45,ok=true
 resource=/path/to/second/file,loadsec=0.32,ok=true
 resource=/some/other/path,loadsec=0.97,ok=false

histogram

 mlr histogram --help
 Just a histogram. Input values < lo or > hi are not counted.
 Usage: mlr histogram [options]
 -f {a,b,c}    Value-field names for histogram counts
 --lo {lo}     Histogram low value
 --hi {hi}     Histogram high value
 --nbins {n}   Number of histogram bins
 --auto        Automatically computes limits, ignoring --lo and --hi.
               Holds all values in memory before producing any output.
 -o {prefix}   Prefix for output field name. Default: no prefix.
 -h|--help Show this message.

This is just a histogram; there’s not too much to say here. A note about binning, by example: Suppose you use --lo 0.0 --hi 1.0 --nbins 10 -f x. The input numbers less than 0 or greater than 1 aren’t counted in any bin. Input numbers equal to 1 are counted in the last bin. That is, bin 0 has 0.0 &le; x < 0.1, bin 1 has 0.1 &le; x < 0.2, etc., but bin 9 has 0.9 &le; x &le; 1.0.

 mlr --opprint put '$x2=$x**2;$x3=$x2*$x' \
   then histogram -f x,x2,x3 --lo 0 --hi 1 --nbins 10 \
   data/medium
 bin_lo bin_hi x_count x2_count x3_count
 0      0.1    1072    3231     4661
 0.1    0.2    938     1254     1184
 0.2    0.3    1037    988      845
 0.3    0.4    988     832      676
 0.4    0.5    950     774      576
 0.5    0.6    1002    692      476
 0.6    0.7    1007    591      438
 0.7    0.8    1007    560      420
 0.8    0.9    986     571      383
 0.9    1      1013    507      341
 mlr --opprint put '$x2=$x**2;$x3=$x2*$x' \
   then histogram -f x,x2,x3 --lo 0 --hi 1 --nbins 10 -o my_ \
   data/medium
 my_bin_lo my_bin_hi my_x_count my_x2_count my_x3_count
 0         0.1       1072       3231        4661
 0.1       0.2       938        1254        1184
 0.2       0.3       1037       988         845
 0.3       0.4       988        832         676
 0.4       0.5       950        774         576
 0.5       0.6       1002       692         476
 0.6       0.7       1007       591         438
 0.7       0.8       1007       560         420
 0.8       0.9       986        571         383
 0.9       1         1013       507         341

join

 mlr join --help
 Usage: mlr sort {flags}
 Sorts records primarily by the first specified field, secondarily by the second
 field, and so on.  (Any records not having all specified sort keys will appear
 at the end of the output, in the order they were encountered, regardless of the
 specified sort order.) The sort is stable: records that compare equal will sort
 in the order they were encountered in the input record stream.

 Options:
 -f  {comma-separated field names}  Lexical ascending
 -n  {comma-separated field names}  Numerical ascending; nulls sort last
 -nf {comma-separated field names}  Same as -n
 -r  {comma-separated field names}  Lexical descending
 -nr {comma-separated field names}  Numerical descending; nulls sort first
 -h|--help Show this message.

 Example:
   mlr sort -f a,b -nr x,y,z
 which is the same as:
   mlr sort -f a -f b -nr x -nr y -nr z

Examples:

Join larger table with IDs with smaller ID-to-name lookup table, showing only paired records:

 mlr --icsvlite --opprint cat data/join-left-example.csv
 id  name
 100 alice
 200 bob
 300 carol
 400 david
 500 edgar
 mlr --icsvlite --opprint cat data/join-right-example.csv
 status  idcode
 present 400
 present 100
 missing 200
 present 100
 present 200
 missing 100
 missing 200
 present 300
 missing 600
 present 400
 present 400
 present 300
 present 100
 missing 400
 present 200
 present 200
 present 200
 present 200
 present 400
 present 300
 mlr --icsvlite --opprint \
   join -u -j id -r idcode -f data/join-left-example.csv \
   data/join-right-example.csv
 id  name  status
 400 david present
 100 alice present
 200 bob   missing
 100 alice present
 200 bob   present
 100 alice missing
 200 bob   missing
 300 carol present
 400 david present
 400 david present
 300 carol present
 100 alice present
 400 david missing
 200 bob   present
 200 bob   present
 200 bob   present
 200 bob   present
 400 david present
 300 carol present

Same, but with sorting the input first:

 mlr --icsvlite --opprint sort -f idcode \
   then join -j id -r idcode -f data/join-left-example.csv \
   data/join-right-example.csv
 id  name  status
 100 alice present
 100 alice present
 100 alice missing
 100 alice present
 200 bob   missing
 200 bob   present
 200 bob   missing
 200 bob   present
 200 bob   present
 200 bob   present
 200 bob   present
 300 carol present
 300 carol present
 300 carol present
 400 david present
 400 david present
 400 david present
 400 david missing
 400 david present

Same, but showing only unpaired records:

 mlr --icsvlite --opprint \
   join --np --ul --ur -u -j id -r idcode -f data/join-left-example.csv \
   data/join-right-example.csv
 status  idcode
 missing 600

 id  name
 500 edgar

Use prefixing options to disambiguate between otherwise identical non-join field names:

 mlr --csvlite --opprint cat data/self-join.csv data/self-join.csv
 a b c
 1 2 3
 1 4 5
 1 2 3
 1 4 5
 mlr --csvlite --opprint join -j a --lp left_ --rp right_ -f data/self-join.csv data/self-join.csv
 a left_b left_c right_b right_c
 1 2      3      2       3
 1 4      5      2       3
 1 2      3      4       5
 1 4      5      4       5

Use zero join columns:

 mlr --csvlite --opprint join -j "" --lp left_ --rp right_ -f data/self-join.csv data/self-join.csv
 left_a left_b left_c right_a right_b right_c
 1      2      3      1       2       3
 1      4      5      1       2       3
 1      2      3      1       4       5
 1      4      5      1       4       5

label

 mlr label --help
 Usage: mlr label [options] {new1,new2,new3,...}
 Given n comma-separated names, renames the first n fields of each record to
 have the respective name. (Fields past the nth are left with their original
 names.) Particularly useful with --inidx or --implicit-csv-header, to give
 useful names to otherwise integer-indexed fields.

 Options:
 -h|--help Show this message.

See also rename.

Example: Files such as /etc/passwd, /etc/group, and so on have implicit field names which are found in section-5 manpages. These field names may be made explicit as follows:

% grep -v '^#' /etc/passwd | mlr --nidx --fs : --opprint label name,password,uid,gid,gecos,home_dir,shell | head
name                  password uid gid gecos                         home_dir           shell
nobody                *        -2  -2  Unprivileged User             /var/empty         /usr/bin/false
root                  *        0   0   System Administrator          /var/root          /bin/sh
daemon                *        1   1   System Services               /var/root          /usr/bin/false
_uucp                 *        4   4   Unix to Unix Copy Protocol    /var/spool/uucp    /usr/sbin/uucico
_taskgated            *        13  13  Task Gate Daemon              /var/empty         /usr/bin/false
_networkd             *        24  24  Network Services              /var/networkd      /usr/bin/false
_installassistant     *        25  25  Install Assistant             /var/empty         /usr/bin/false
_lp                   *        26  26  Printing Services             /var/spool/cups    /usr/bin/false
_postfix              *        27  27  Postfix Mail Server           /var/spool/postfix /usr/bin/false

Likewise, if you have CSV/CSV-lite input data which has somehow been bereft of its header line, you can re-add a header line using --implicit-csv-header and label:

 cat data/headerless.csv
 John,23,present
 Fred,34,present
 Alice,56,missing
 Carol,45,present
 mlr  --csv --implicit-csv-header cat data/headerless.csv
 1,2,3
 John,23,present
 Fred,34,present
 Alice,56,missing
 Carol,45,present
 mlr  --csv --implicit-csv-header label name,age,status data/headerless.csv
 name,age,status
 John,23,present
 Fred,34,present
 Alice,56,missing
 Carol,45,present
 mlr --icsv --implicit-csv-header --opprint label name,age,status data/headerless.csv
 name  age status
 John  23  present
 Fred  34  present
 Alice 56  missing
 Carol 45  present

least-frequent

 mlr least-frequent -h
 Usage: mlr least-frequent [options]
 Shows the least frequently occurring distinct values for specified field names.
 The first entry is the statistical anti-mode; the remaining are runners-up.
 Options:
 -f {one or more comma-separated field names}. Required flag.
 -n {count}. Optional flag defaulting to 10.
 -b          Suppress counts; show only field values.
 -o {name}   Field name for output count. Default "count".
 See also "mlr most-frequent".
 mlr --opprint --from data/colored-shapes.dkvp least-frequent -f shape -n 5
 shape    count
 circle   2591
 triangle 3372
 square   4115
 mlr --opprint --from data/colored-shapes.dkvp least-frequent -f shape,color -n 5
 shape    color  count
 circle   orange 68
 triangle orange 107
 square   orange 128
 circle   green  287
 circle   purple 289
 mlr --opprint --from data/colored-shapes.dkvp least-frequent -f shape,color -n 5 -o someothername
 shape    color  someothername
 circle   orange 68
 triangle orange 107
 square   orange 128
 circle   green  287
 circle   purple 289
 mlr --opprint --from data/colored-shapes.dkvp least-frequent -f shape,color -n 5 -b
 shape    color
 circle   orange
 triangle orange
 square   orange
 circle   green
 circle   purple

See also most-frequent.

merge-fields

 mlr merge-fields --help
 Usage: mlr merge-fields [options]
 Computes univariate statistics for each input record, accumulated across
 specified fields.
 Options:
 -a {sum,count,...}  Names of accumulators. One or more of:
   count    Count instances of fields
   mode     Find most-frequently-occurring values for fields; first-found wins tie
   antimode Find least-frequently-occurring values for fields; first-found wins tie
   sum      Compute sums of specified fields
   mean     Compute averages (sample means) of specified fields
   var      Compute sample variance of specified fields
   stddev   Compute sample standard deviation of specified fields
   meaneb   Estimate error bars for averages (assuming no sample autocorrelation)
   skewness Compute sample skewness of specified fields
   kurtosis Compute sample kurtosis of specified fields
   min      Compute minimum values of specified fields
   max      Compute maximum values of specified fields
 -f {a,b,c}  Value-field names on which to compute statistics. Requires -o.
 -r {a,b,c}  Regular expressions for value-field names on which to compute
             statistics. Requires -o.
 -c {a,b,c}  Substrings for collapse mode. All fields which have the same names
             after removing substrings will be accumulated together. Please see
             examples below.
 -i          Use interpolated percentiles, like R's type=7; default like type=1.
             Not sensical for string-valued fields.
 -o {name}   Output field basename for -f/-r.
 -k          Keep the input fields which contributed to the output statistics;
             the default is to omit them.

 String-valued data make sense unless arithmetic on them is required,
 e.g. for sum, mean, interpolated percentiles, etc. In case of mixed data,
 numbers are less than strings.

 Example input data: "a_in_x=1,a_out_x=2,b_in_y=4,b_out_x=8".
 Example: mlr merge-fields -a sum,count -f a_in_x,a_out_x -o foo
   produces "b_in_y=4,b_out_x=8,foo_sum=3,foo_count=2" since "a_in_x,a_out_x" are
   summed over.
 Example: mlr merge-fields -a sum,count -r in_,out_ -o bar
   produces "bar_sum=15,bar_count=4" since all four fields are summed over.
 Example: mlr merge-fields -a sum,count -c in_,out_
   produces "a_x_sum=3,a_x_count=2,b_y_sum=4,b_y_count=1,b_x_sum=8,b_x_count=1"
   since "a_in_x" and "a_out_x" both collapse to "a_x", "b_in_y" collapses to
   "b_y", and "b_out_x" collapses to "b_x".

This is like mlr stats1 but all accumulation is done across fields within each given record: horizontal rather than vertical statistics, if you will.

Examples:

 mlr --csvlite --opprint cat data/inout.csv
 a_in a_out b_in b_out
 436  490   446  195
 526  320   963  780
 220  888   705  831
 mlr --csvlite --opprint merge-fields -a min,max,sum -c _in,_out data/inout.csv
 a_min a_max a_sum b_min b_max b_sum
 436   490   926   195   446   641
 320   526   846   780   963   1743
 220   888   1108  705   831   1536
 mlr --csvlite --opprint merge-fields -k -a sum -c _in,_out data/inout.csv
 a_in a_out b_in b_out a_sum b_sum
 436  490   446  195   926   641
 526  320   963  780   846   1743
 220  888   705  831   1108  1536

most-frequent

 mlr most-frequent -h
 Usage: mlr most-frequent [options]
 Shows the most frequently occurring distinct values for specified field names.
 The first entry is the statistical mode; the remaining are runners-up.
 Options:
 -f {one or more comma-separated field names}. Required flag.
 -n {count}. Optional flag defaulting to 10.
 -b          Suppress counts; show only field values.
 -o {name}   Field name for output count. Default "count".
 See also "mlr least-frequent".
 mlr --opprint --from data/colored-shapes.dkvp most-frequent -f shape -n 5
 shape    count
 square   4115
 triangle 3372
 circle   2591
 mlr --opprint --from data/colored-shapes.dkvp most-frequent -f shape,color -n 5
 shape    color  count
 square   red    1874
 triangle red    1560
 circle   red    1207
 square   yellow 589
 square   blue   589
 mlr --opprint --from data/colored-shapes.dkvp most-frequent -f shape,color -n 5 -o someothername
 shape    color  someothername
 square   red    1874
 triangle red    1560
 circle   red    1207
 square   yellow 589
 square   blue   589
 mlr --opprint --from data/colored-shapes.dkvp most-frequent -f shape,color -n 5 -b
 shape    color
 square   red
 triangle red
 circle   red
 square   yellow
 square   blue

See also least-frequent.

nest

 mlr nest -h
 Usage: mlr nest [options]
 Explodes specified field values into separate fields/records, or reverses this.
 Options:
   --explode,--implode   One is required.
   --values,--pairs      One is required.
   --across-records,--across-fields One is required.
   -f {field name}       Required.
   --nested-fs {string}  Defaults to ";". Field separator for nested values.
   --nested-ps {string}  Defaults to ":". Pair separator for nested key-value pairs.
   --evar {string}       Shorthand for --explode --values ---across-records --nested-fs {string}
   --ivar {string}       Shorthand for --implode --values ---across-records --nested-fs {string}
 Please use "mlr --usage-separator-options" for information on specifying separators.

 Examples:

   mlr nest --explode --values --across-records -f x
   with input record "x=a;b;c,y=d" produces output records
     "x=a,y=d"
     "x=b,y=d"
     "x=c,y=d"
   Use --implode to do the reverse.

   mlr nest --explode --values --across-fields -f x
   with input record "x=a;b;c,y=d" produces output records
     "x_1=a,x_2=b,x_3=c,y=d"
   Use --implode to do the reverse.

   mlr nest --explode --pairs --across-records -f x
   with input record "x=a:1;b:2;c:3,y=d" produces output records
     "a=1,y=d"
     "b=2,y=d"
     "c=3,y=d"

   mlr nest --explode --pairs --across-fields -f x
   with input record "x=a:1;b:2;c:3,y=d" produces output records
     "a=1,b=2,c=3,y=d"

 Notes:
 * With --pairs, --implode doesn't make sense since the original field name has
   been lost.
 * The combination "--implode --values --across-records" is non-streaming:
   no output records are produced until all input records have been read. In
   particular, this means it won't work in tail -f contexts. But all other flag
   combinations result in streaming (tail -f friendly) data processing.
 * It's up to you to ensure that the nested-fs is distinct from your data's IFS:
   e.g. by default the former is semicolon and the latter is comma.
 See also mlr reshape.

nothing

 mlr nothing -h
 Usage: mlr nothing [options]
 Drops all input records. Useful for testing, or after tee/print/etc. have
 produced other output.
 Options:
 -h|--help Show this message.

put

 mlr put --help
 Usage: mlr put [options] {DSL expression}
 Options:
 -f {file name} File containing a DSL expression. If the filename is a directory,
    all *.mlr files in that directory are loaded.

 -e {expression} You can use this after -f to add an expression. Example use
    case: define functions/subroutines in a file you specify with -f, then call
    them with an expression you specify with -e.

 (If you mix -e and -f then the expressions are evaluated in the order encountered.
 Since the expression pieces are simply concatenated, please be sure to use intervening
 semicolons to separate expressions.)

 -s name=value: Predefines out-of-stream variable @name to have
     Thus mlr put -s foo=97 '$column += @foo' is like
     mlr put 'begin {@foo = 97} $column += @foo'.
     The value part is subject to type-inferencing.
     May be specified more than once, e.g. -s name1=value1 -s name2=value2.
     Note: the value may be an environment variable, e.g. -s sequence=$SEQUENCE

 -x (default false) Prints records for which {expression} evaluates to false, not true,
    i.e. invert the sense of the filter expression.

 -q Does not include the modified record in the output stream.
    Useful for when all desired output is in begin and/or end blocks.

 -S and -F: There are no-ops in Miller 6 and above, since now type-inferencing is done
    by the record-readers before filter/put is executed. Supported as no-op pass-through
    flags for backward compatibility.

 -h|--help Show this message.

 Parser-info options:

 -w Print warnings about things like uninitialized variables.

 -W Same as -w, but exit the process if there are any warnings.

 -p Prints the expressions's AST (abstract syntax tree), which gives full
   transparency on the precedence and associativity rules of Miller's grammar,
   to stdout.

 -d Like -p but uses a parenthesized-expression format for the AST.

 -D Like -d but with output all on one line.

 -E Echo DSL expression before printing parse-tree

 -v Same as -E -p.

 -X Exit after parsing but before stream-processing. Useful with -v/-d/-D, if you
    only want to look at parser information.

Features which put shares with filter

Please see the DSL reference: overview for more information about the expression language for mlr put.

regularize

 mlr regularize --help
 Usage: mlr regularize [options]
 Outputs records sorted lexically ascending by keys.Options:
 -h|--help Show this message.

This exists since hash-map software in various languages and tools encountered in the wild does not always print similar rows with fields in the same order: mlr regularize helps clean that up.

See also reorder.

remove-empty-columns

 mlr remove-empty-columns --help
 Usage: mlr remove-empty-columns [options]
 Omits fields which are empty on every input row. Non-streaming.
 Options:
 -h|--help Show this message.
 cat data/remove-empty-columns.csv
 a,b,c,d,e
 1,,3,,5
 2,,4,,5
 3,,5,,7
 mlr --csv remove-empty-columns data/remove-empty-columns.csv
 a,c,e
 1,3,5
 2,4,5
 3,5,7

Since this verb needs to read all records to see if any of them has a non-empty value for a given field name, it is non-streaming: it will ingest all records before writing any.

rename

 mlr rename --help
 Usage: mlr rename [options] {old1,new1,old2,new2,...}
 Renames specified fields.
 Options:
 -r         Treat old field  names as regular expressions. "ab", "a.*b"
            will match any field name containing the substring "ab" or
            matching "a.*b", respectively; anchors of the form "^ab$",
            "^a.*b$" may be used. New field names may be plain strings,
            or may contain capture groups of the form "\1" through
            "\9". Wrapping the regex in double quotes is optional, but
            is required if you wish to follow it with 'i' to indicate
            case-insensitivity.
 -g         Do global replacement within each field name rather than
            first-match replacement.
 -h|--help Show this message.
 Examples:
 mlr rename old_name,new_name'
 mlr rename old_name_1,new_name_1,old_name_2,new_name_2'
 mlr rename -r 'Date_[0-9]+,Date,'  Rename all such fields to be "Date"
 mlr rename -r '"Date_[0-9]+",Date' Same
 mlr rename -r 'Date_([0-9]+).*,\1' Rename all such fields to be of the form 20151015
 mlr rename -r '"name"i,Name'       Rename "name", "Name", "NAME", etc. to "Name"
 mlr --opprint cat data/small
 a   b   i x                   y
 pan pan 1 0.3467901443380824  0.7268028627434533
 eks pan 2 0.7586799647899636  0.5221511083334797
 wye wye 3 0.20460330576630303 0.33831852551664776
 eks wye 4 0.38139939387114097 0.13418874328430463
 wye pan 5 0.5732889198020006  0.8636244699032729
 mlr --opprint rename i,INDEX,b,COLUMN2 data/small
 a   COLUMN2 INDEX x                   y
 pan pan     1     0.3467901443380824  0.7268028627434533
 eks pan     2     0.7586799647899636  0.5221511083334797
 wye wye     3     0.20460330576630303 0.33831852551664776
 eks wye     4     0.38139939387114097 0.13418874328430463
 wye pan     5     0.5732889198020006  0.8636244699032729

As discussed in Performance, sed is significantly faster than Miller at doing this. However, Miller is format-aware, so it knows to do renames only within specified field keys and not any others, nor in field values which may happen to contain the same pattern. Example:

 sed 's/y/COLUMN5/g' data/small
 a=pan,b=pan,i=1,x=0.3467901443380824,COLUMN5=0.7268028627434533
 a=eks,b=pan,i=2,x=0.7586799647899636,COLUMN5=0.5221511083334797
 a=wCOLUMN5e,b=wCOLUMN5e,i=3,x=0.20460330576630303,COLUMN5=0.33831852551664776
 a=eks,b=wCOLUMN5e,i=4,x=0.38139939387114097,COLUMN5=0.13418874328430463
 a=wCOLUMN5e,b=pan,i=5,x=0.5732889198020006,COLUMN5=0.8636244699032729
 mlr rename y,COLUMN5 data/small
 a=pan,b=pan,i=1,x=0.3467901443380824,COLUMN5=0.7268028627434533
 a=eks,b=pan,i=2,x=0.7586799647899636,COLUMN5=0.5221511083334797
 a=wye,b=wye,i=3,x=0.20460330576630303,COLUMN5=0.33831852551664776
 a=eks,b=wye,i=4,x=0.38139939387114097,COLUMN5=0.13418874328430463
 a=wye,b=pan,i=5,x=0.5732889198020006,COLUMN5=0.8636244699032729

See also label.

reorder

 mlr reorder --help
 Usage: mlr reorder [options]
 Moves specified names to start of record, or end of record.
 Options:
 -e Put specified field names at record end: default is to put them at record start.
 -f {a,b,c} Field names to reorder.
 -b {x}     Put field names specified with -f before field name specified by {x},
            if any. If {x} isn't present in a given record, the specified fields
            will not be moved.
 -a {x}     Put field names specified with -f after field name specified by {x},
            if any. If {x} isn't present in a given record, the specified fields
            will not be moved.
 -h|--help Show this message.

 Examples:
 mlr reorder    -f a,b sends input record "d=4,b=2,a=1,c=3" to "a=1,b=2,d=4,c=3".
 mlr reorder -e -f a,b sends input record "d=4,b=2,a=1,c=3" to "d=4,c=3,a=1,b=2".

This pivots specified field names to the start or end of the record – for example when you have highly multi-column data and you want to bring a field or two to the front of line where you can give a quick visual scan.

 mlr --opprint cat data/small
 a   b   i x                   y
 pan pan 1 0.3467901443380824  0.7268028627434533
 eks pan 2 0.7586799647899636  0.5221511083334797
 wye wye 3 0.20460330576630303 0.33831852551664776
 eks wye 4 0.38139939387114097 0.13418874328430463
 wye pan 5 0.5732889198020006  0.8636244699032729
 mlr --opprint reorder -f i,b data/small
 i b   a   x                   y
 1 pan pan 0.3467901443380824  0.7268028627434533
 2 pan eks 0.7586799647899636  0.5221511083334797
 3 wye wye 0.20460330576630303 0.33831852551664776
 4 wye eks 0.38139939387114097 0.13418874328430463
 5 pan wye 0.5732889198020006  0.8636244699032729
 mlr --opprint reorder -e -f i,b data/small
 a   x                   y                   i b
 pan 0.3467901443380824  0.7268028627434533  1 pan
 eks 0.7586799647899636  0.5221511083334797  2 pan
 wye 0.20460330576630303 0.33831852551664776 3 wye
 eks 0.38139939387114097 0.13418874328430463 4 wye
 wye 0.5732889198020006  0.8636244699032729  5 pan

repeat

 mlr repeat --help
 Usage: mlr repeat [options]
 Copies input records to output records multiple times.
 Options must be exactly one of the following:
 -n {repeat count}  Repeat each input record this many times.
 -f {field name}    Same, but take the repeat count from the specified
                    field name of each input record.
 -h|--help Show this message.
 Example:
   echo x=0 | mlr repeat -n 4 then put '$x=urand()'
 produces:
  x=0.488189
  x=0.484973
  x=0.704983
  x=0.147311
 Example:
   echo a=1,b=2,c=3 | mlr repeat -f b
 produces:
   a=1,b=2,c=3
   a=1,b=2,c=3
 Example:
   echo a=1,b=2,c=3 | mlr repeat -f c
 produces:
   a=1,b=2,c=3
   a=1,b=2,c=3
   a=1,b=2,c=3

This is useful in at least two ways: one, as a data-generator as in the above example using urand(); two, for reconstructing individual samples from data which has been count-aggregated:

 cat data/repeat-example.dat
 color=blue,count=5
 color=red,count=4
 color=green,count=3
 mlr repeat -f count then cut -x -f count data/repeat-example.dat
 color=blue
 color=blue
 color=blue
 color=blue
 color=blue
 color=red
 color=red
 color=red
 color=red
 color=green
 color=green
 color=green

After expansion with repeat, such data can then be sent on to stats1 -a mode, or (if the data are numeric) to stats1 -a p10,p50,p90, etc.

reshape

 mlr reshape --help
 Usage: mlr reshape [options]
 Wide-to-long options:
   -i {input field names}   -o {key-field name,value-field name}
   -r {input field regexes} -o {key-field name,value-field name}
   These pivot/reshape the input data such that the input fields are removed
   and separate records are emitted for each key/value pair.
   Note: this works with tail -f and produces output records for each input
   record seen.
 Long-to-wide options:
   -s {key-field name,value-field name}
   These pivot/reshape the input data to undo the wide-to-long operation.
   Note: this does not work with tail -f; it produces output records only after
   all input records have been read.

 Examples:

   Input file "wide.txt":
     time       X           Y
     2009-01-01 0.65473572  2.4520609
     2009-01-02 -0.89248112 0.2154713
     2009-01-03 0.98012375  1.3179287

   mlr --pprint reshape -i X,Y -o item,value wide.txt
     time       item value
     2009-01-01 X    0.65473572
     2009-01-01 Y    2.4520609
     2009-01-02 X    -0.89248112
     2009-01-02 Y    0.2154713
     2009-01-03 X    0.98012375
     2009-01-03 Y    1.3179287

   mlr --pprint reshape -r '[A-Z]' -o item,value wide.txt
     time       item value
     2009-01-01 X    0.65473572
     2009-01-01 Y    2.4520609
     2009-01-02 X    -0.89248112
     2009-01-02 Y    0.2154713
     2009-01-03 X    0.98012375
     2009-01-03 Y    1.3179287

   Input file "long.txt":
     time       item value
     2009-01-01 X    0.65473572
     2009-01-01 Y    2.4520609
     2009-01-02 X    -0.89248112
     2009-01-02 Y    0.2154713
     2009-01-03 X    0.98012375
     2009-01-03 Y    1.3179287

   mlr --pprint reshape -s item,value long.txt
     time       X           Y
     2009-01-01 0.65473572  2.4520609
     2009-01-02 -0.89248112 0.2154713
     2009-01-03 0.98012375  1.3179287
 See also mlr nest.

sample

 mlr sample --help
 Usage: mlr sample [options]
 Reservoir sampling (subsampling without replacement), optionally by category.
 See also mlr bootstrap and mlr shuffle.
 Options:
 -g {a,b,c} Optional: group-by-field names for samples, e.g. a,b,c.
 -k {k} Required: number of records to output in total, or by group if using -g.
 -h|--help Show this message.

This is reservoir-sampling: select k items from n with uniform probability and no repeats in the sample. (If n is less than k, then of course only n samples are produced.) With -g {field names}, produce a k-sample for each distinct value of the specified field names.

$ mlr --opprint sample -k 4 data/colored-shapes.dkvp
color  shape    flag i     u                   v                    w                   x
purple triangle 0    90122 0.9986871176198068  0.3037738877233719   0.5154934457238382  5.365962021016529
red    circle   0    3139  0.04835898233323954 -0.03964684310055758 0.5263660881848111  5.3758779366493625
orange triangle 0    67847 0.36746306902109926 0.5161574810505635   0.5176199566173642  3.1748088656576567
yellow square   1    33576 0.3098376725521097  0.8525628505287842   0.49774122460981685 4.494754378604669

$ mlr --opprint sample -k 4 data/colored-shapes.dkvp
color  shape  flag i     u                     v                   w                   x
blue   square 1    16783 0.09974385090654347   0.7243899920872646  0.5353718443278438  4.431057737383438
orange square 1    93291 0.5944176543007182    0.17744449786454086 0.49262281749172077 3.1548117990710653
yellow square 1    54436 0.5268161165014636    0.8785588662666121  0.5058773791931063  7.019185838783636
yellow square 1    55491 0.0025440267883102274 0.05474106287787284 0.5102729153751984  3.526301273728043

$ mlr --opprint sample -k 2 -g color data/colored-shapes.dkvp
color  shape    flag i     u                    v                   w                    x
yellow triangle 1    11    0.6321695890307647   0.9887207810889004  0.4364983936735774   5.7981881667050565
yellow square   1    917   0.8547010348386344   0.7356782810796262  0.4531511689924275   5.774541777078352
red    circle   1    4000  0.05490416175132373  0.07392337815122155 0.49416101516594396  5.355725080701707
red    square   0    87506 0.6357719216821314   0.6970867759393995  0.4940826462055272   6.351579417310387
purple triangle 0    14898 0.7800986870203719   0.23998073813992293 0.5014775988383656   3.141006771777843
purple triangle 0    151   0.032614487569017414 0.7346633365041219  0.7812143304483805   2.6831992610568047
green  triangle 1    126   0.1513010528347546   0.40346767294704544 0.051213231883952326 5.955109300797182
green  circle   0    17635 0.029856606049114442 0.4724542934246524  0.49529606749929744  5.239153910272168
blue   circle   1    1020  0.414263129226617    0.8304946402876182  0.13151094520189244  4.397873687920433
blue   triangle 0    220   0.441773289968473    0.44597731903759075 0.6329360666849821   4.3064608776550894
orange square   0    1885  0.8079311983747106   0.8685956833908394  0.3116410800256374   4.390864584500387
orange triangle 0    1533  0.32904497195507487  0.23168161807490417 0.8722623057355134   5.164071635714438

$ mlr --opprint sample -k 2 -g color then sort -f color data/colored-shapes.dkvp
color  shape    flag i     u                   v                    w                   x
blue   circle   0    215   0.7803586969333292  0.33146680638888126  0.04289047852629113 5.725365736377487
blue   circle   1    3616  0.8548431579124808  0.4989623130006362   0.3339426415875795  3.696785877560498
green  square   0    356   0.7674272008085286  0.341578843118008    0.4570224877870851  4.830320062215299
green  square   0    152   0.6684429446914862  0.016056003736548696 0.4656148241291592  5.434588759225423
orange triangle 0    587   0.5175826237797857  0.08989091493635304  0.9011709461770973  4.265854207755811
orange triangle 0    1533  0.32904497195507487 0.23168161807490417  0.8722623057355134  5.164071635714438
purple triangle 0    14192 0.5196327866973567  0.7860928603468063   0.4964368415453642  4.899167143824484
purple triangle 0    65    0.6842806710360729  0.5823723856331258   0.8014053396013747  5.805148213865135
red    square   1    2431  0.38378504852300466 0.11445015005595527  0.49355539228753786 5.146756570128739
red    triangle 0    57097 0.43763430414406546 0.3355450325004481   0.5322349637512487  4.144267240289442
yellow triangle 1    11    0.6321695890307647  0.9887207810889004   0.4364983936735774  5.7981881667050565
yellow square   1    158   0.41527900739142165 0.7118027080775757   0.4200799665161291  5.33279067554884

Note that no output is produced until all inputs are in. Another way to do sampling, which works in the streaming case, is mlr filter 'urand() & 0.001' where you tune the 0.001 to meet your needs.

sec2gmt

 mlr sec2gmt -h
 Usage: mlr sec2gmt [options] {comma-separated list of field names}
 Replaces a numeric field representing seconds since the epoch with the
 corresponding GMT timestamp; leaves non-numbers as-is. This is nothing
 more than a keystroke-saver for the sec2gmt function:
   mlr sec2gmt time1,time2
 is the same as
   mlr put '$time1 = sec2gmt($time1); $time2 = sec2gmt($time2)'
 Options:
 -1 through -9: format the seconds using 1..9 decimal places, respectively.
 --millis Input numbers are treated as milliseconds since the epoch.
 --micros Input numbers are treated as microseconds since the epoch.
 --nanos  Input numbers are treated as nanoseconds since the epoch.
 -h|--help Show this message.

sec2gmtdate

 mlr sec2gmtdate -h
 Usage: ../c/mlr sec2gmtdate {comma-separated list of field names}
 Replaces a numeric field representing seconds since the epoch with the
 corresponding GMT year-month-day timestamp; leaves non-numbers as-is.
 This is nothing more than a keystroke-saver for the sec2gmtdate function:
   ../c/mlr sec2gmtdate time1,time2
 is the same as
   ../c/mlr put '$time1=sec2gmtdate($time1);$time2=sec2gmtdate($time2)'

seqgen

 mlr seqgen -h
 Usage: mlr seqgen [options]
 Passes input records directly to output. Most useful for format conversion.
 Produces a sequence of counters.  Discards the input record stream. Produces
 output as specified by the options

 Options:
 -f {name} (default "i") Field name for counters.
 --start {value} (default 1) Inclusive start value.
 --step {value} (default 1) Step value.
 --stop {value} (default 100) Inclusive stop value.
 -h|--help Show this message.
 Start, stop, and/or step may be floating-point. Output is integer if start,
 stop, and step are all integers. Step may be negative. It may not be zero
 unless start == stop.
 mlr seqgen --stop 10
 i=1
 i=2
 i=3
 i=4
 i=5
 i=6
 i=7
 i=8
 i=9
 i=10
 mlr seqgen --start 20 --stop 40 --step 4
 i=20
 i=24
 i=28
 i=32
 i=36
 i=40
 mlr seqgen --start 40 --stop 20 --step -4
 i=40
 i=36
 i=32
 i=28
 i=24
 i=20

shuffle

 mlr shuffle -h
 Usage: mlr shuffle [options]
 Outputs records randomly permuted. No output records are produced until
 all input records are read. See also mlr bootstrap and mlr sample.
 Options:
 -h|--help Show this message.

skip-trivial-records

 mlr skip-trivial-records -h
 Usage: mlr skip-trivial-records [options]
 Passes through all records except those with zero fields,
 or those for which all fields have empty value.
 Options:
 -h|--help Show this message.
 cat data/trivial-records.csv
 a,b,c
 1,2,3
 4,,6
 ,,
 ,8,9
 mlr --csv skip-trivial-records data/trivial-records.csv
 a,b,c
 1,2,3
 4,,6
 ,8,9

sort

 mlr sort --help
 Usage: mlr sort {flags}
 Sorts records primarily by the first specified field, secondarily by the second
 field, and so on.  (Any records not having all specified sort keys will appear
 at the end of the output, in the order they were encountered, regardless of the
 specified sort order.) The sort is stable: records that compare equal will sort
 in the order they were encountered in the input record stream.

 Options:
 -f  {comma-separated field names}  Lexical ascending
 -n  {comma-separated field names}  Numerical ascending; nulls sort last
 -nf {comma-separated field names}  Same as -n
 -r  {comma-separated field names}  Lexical descending
 -nr {comma-separated field names}  Numerical descending; nulls sort first
 -h|--help Show this message.

 Example:
   mlr sort -f a,b -nr x,y,z
 which is the same as:
   mlr sort -f a -f b -nr x -nr y -nr z

Example:

 mlr --opprint sort -f a -nr x data/small
 a   b   i x                   y
 eks pan 2 0.7586799647899636  0.5221511083334797
 eks wye 4 0.38139939387114097 0.13418874328430463
 pan pan 1 0.3467901443380824  0.7268028627434533
 wye pan 5 0.5732889198020006  0.8636244699032729
 wye wye 3 0.20460330576630303 0.33831852551664776

Here’s an example filtering log data: suppose multiple threads (labeled here by color) are all logging progress counts to a single log file. The log file is (by nature) chronological, so the progress of various threads is interleaved:

 head -n 10 data/multicountdown.dat
 upsec=0.002,color=green,count=1203
 upsec=0.083,color=red,count=3817
 upsec=0.188,color=red,count=3801
 upsec=0.395,color=blue,count=2697
 upsec=0.526,color=purple,count=953
 upsec=0.671,color=blue,count=2684
 upsec=0.899,color=purple,count=926
 upsec=0.912,color=red,count=3798
 upsec=1.093,color=blue,count=2662
 upsec=1.327,color=purple,count=917

We can group these by thread by sorting on the thread ID (here, color). Since Miller’s sort is stable, this means that timestamps within each thread’s log data are still chronological:

 head -n 20 data/multicountdown.dat | mlr --opprint sort -f color
 upsec              color  count
 0.395              blue   2697
 0.671              blue   2684
 1.093              blue   2662
 2.064              blue   2659
 2.2880000000000003 blue   2647
 0.002              green  1203
 1.407              green  1187
 1.448              green  1177
 2.313              green  1161
 0.526              purple 953
 0.899              purple 926
 1.327              purple 917
 1.703              purple 908
 0.083              red    3817
 0.188              red    3801
 0.912              red    3798
 1.416              red    3788
 1.587              red    3782
 1.601              red    3755
 1.832              red    3717

Any records not having all specified sort keys will appear at the end of the output, in the order they were encountered, regardless of the specified sort order:

 mlr sort -n  x data/sort-missing.dkvp
 x=1
 x=2
 x=4
 a=3
 mlr sort -nr x data/sort-missing.dkvp
 x=4
 x=2
 x=1
 a=3

sort-within-records

 mlr sort-within-records -h
 Usage: mlr sort-within-records [options]
 Outputs records sorted lexically ascending by keys.
 Options:
 -r        Recursively sort subobjects/submaps, e.g. for JSON input.
 -h|--help Show this message.
 cat data/sort-within-records.json
 {
   "a": 1,
   "b": 2,
   "c": 3
 }
 {
   "b": 4,
   "a": 5,
   "c": 6
 }
 {
   "c": 7,
   "b": 8,
   "a": 9
 }
 mlr --ijson --opprint cat data/sort-within-records.json
 a b c
 1 2 3

 b a c
 4 5 6

 c b a
 7 8 9
 mlr --json sort-within-records data/sort-within-records.json
 {
   "a": 1,
   "b": 2,
   "c": 3
 }
 {
   "a": 5,
   "b": 4,
   "c": 6
 }
 {
   "a": 9,
   "b": 8,
   "c": 7
 }
 mlr --ijson --opprint sort-within-records data/sort-within-records.json
 a b c
 1 2 3
 5 4 6
 9 8 7

stats1

 mlr stats1 --help
 Usage: mlr stats1 [options]
 Computes univariate statistics for one or more given fields, accumulated across
 the input record stream.
 Options:
 -a {sum,count,...} Names of accumulators: one or more of:
   median   This is the same as p50
   p10 p25.2 p50 p98 p100 etc.
   TODO: flags for interpolated percentiles
   count    Count instances of fields
   mode     Find most-frequently-occurring values for fields; first-found wins tie
   antimode Find least-frequently-occurring values for fields; first-found wins tie
   sum      Compute sums of specified fields
   mean     Compute averages (sample means) of specified fields
   var      Compute sample variance of specified fields
   stddev   Compute sample standard deviation of specified fields
   meaneb   Estimate error bars for averages (assuming no sample autocorrelation)
   skewness Compute sample skewness of specified fields
   kurtosis Compute sample kurtosis of specified fields
   min      Compute minimum values of specified fields
   max      Compute maximum values of specified fields

 -f {a,b,c}   Value-field names on which to compute statistics
 -g {d,e,f}   Optional group-by-field names

 -i           Use interpolated percentiles, like R's type=7; default like type=1.\n");
              Not sensical for string-valued fields.\n");
 -s           Print iterative stats. Useful in tail -f contexts (in which
              case please avoid pprint-format output since end of input
              stream will never be seen).
 -h|--help    Show this message.
 [TODO: more]
 Example: mlr stats1 -a min,p10,p50,p90,max -f value -g size,shape
  mlr stats1
 Example: mlr stats1 -a count,mode -f size
  mlr stats1
 Example: mlr stats1 -a count,mode -f size -g shape
  mlr stats1
 Example: mlr stats1 -a count,mode --fr '^[a-h].*$' -gr '^k.*$'
  mlr stats1
         This computes count and mode statistics on all field names beginning
          with a through h, grouped by all field names starting with k.

 Notes:
 * p50 and median are synonymous.
 * min and max output the same results as p0 and p100, respectively, but use
   less memory.
 * String-valued data make sense unless arithmetic on them is required,
   e.g. for sum, mean, interpolated percentiles, etc. In case of mixed data,
   numbers are less than strings.
 * count and mode allow text input; the rest require numeric input.
   In particular, 1 and 1.0 are distinct text for count and mode.
 * When there are mode ties, the first-encountered datum wins.

These are simple univariate statistics on one or more number-valued fields (count and mode apply to non-numeric fields as well), optionally categorized by one or more other fields.

 mlr --oxtab stats1 -a count,sum,min,p10,p50,mean,p90,max -f x,y data/medium
 x_count 10000
 x_sum   4986.019681679581
 x_min   0.00004509679127584487
 x_p10   0.09332217805283527
 x_p50   0.5011592202840128
 x_mean  0.49860196816795804
 x_p90   0.900794437962015
 x_max   0.999952670371898
 y_count 10000
 y_sum   5062.057444929905
 y_min   0.00008818962627266114
 y_p10   0.10213207378968225
 y_p50   0.5060212582772865
 y_mean  0.5062057444929905
 y_p90   0.9053657573378745
 y_max   0.9999648102177897
 mlr --opprint stats1 -a mean -f x,y -g b then sort -f b data/medium
 b   x_mean             y_mean
 eks 0.5063609846272304 0.510292657158104
 hat 0.4878988625336502 0.5131176341556505
 pan 0.4973036405471583 0.49959885012092725
 wye 0.4975928392133964 0.5045964890907357
 zee 0.5042419022900586 0.5029967546798116
 mlr --opprint stats1 -a p50,p99 -f u,v -g color \
   then put '$ur=$u_p99/$u_p50;$vr=$v_p99/$v_p50' \
   data/colored-shapes.dkvp
 color  u_p50               u_p99              v_p50               v_p99              ur                 vr
 yellow 0.5010187906650703  0.9890464545334569 0.5206303554834582  0.9870337429747029 1.9740705797093183 1.8958436298977264
 red    0.48503770531462564 0.9900536015797581 0.49258608624814926 0.9944442307252868 2.0411889441410493 2.0188232239761583
 purple 0.501319018852234   0.9888929892441335 0.5045708384576747  0.9882869130316426 1.9725822321846005 1.9586683131600438
 green  0.5020151016389706  0.9907635833945612 0.5053591509128329  0.9901745564521951 1.9735732653458684 1.9593482272234264
 blue   0.525225660059      0.9926547550299167 0.48516993577967726 0.993872833141726  1.8899586035427312 2.0485045750919286
 orange 0.4835478569328253  0.9936350141409035 0.48091255603363914 0.9891023960550895 2.0548845370623567 2.0567198415711636
 mlr --opprint count-distinct -f shape then sort -nr count data/colored-shapes.dkvp
 shape    count
 square   4115
 triangle 3372
 circle   2591
 mlr --opprint stats1 -a mode -f color -g shape data/colored-shapes.dkvp
 shape    color_mode
 triangle red
 square   red
 circle   red

stats2

 mlr stats2 --help
 Usage: mlr stats2 [options]
 Computes bivariate statistics for one or more given field-name pairs,
 accumulated across the input record stream.
 -a {linreg-ols,corr,...}  Names of accumulators: one or more of:
   linreg-ols Linear regression using ordinary least squares
   linreg-pca Linear regression using principal component analysis
   r2       Quality metric for linreg-ols (linreg-pca emits its own)
   logireg  Logistic regression
   corr     Sample correlation
   cov      Sample covariance
   covx     Sample-covariance matrix
 -f {a,b,c,d}   Value-field name-pairs on which to compute statistics.
                There must be an even number of names.
 -g {e,f,g}     Optional group-by-field names.
 -v             Print additional output for linreg-pca.
 -s             Print iterative stats. Useful in tail -f contexts (in which
                case please avoid pprint-format output since end of input
                stream will never be seen).
 --fit          Rather than printing regression parameters, applies them to
                the input data to compute new fit fields. All input records are
                held in memory until end of input stream. Has effect only for
                linreg-ols, linreg-pca, and logireg.
 Only one of -s or --fit may be used.
 Example: mlr stats2 -a linreg-pca -f x,y
 Example: mlr stats2 -a linreg-ols,r2 -f x,y -g size,shape
 Example: mlr stats2 -a corr -f x,y

These are simple bivariate statistics on one or more pairs of number-valued fields, optionally categorized by one or more fields.

 mlr --oxtab put '$x2=$x*$x; $xy=$x*$y; $y2=$y**2' \
   then stats2 -a cov,corr -f x,y,y,y,x2,xy,x2,y2 \
   data/medium
 x_y_cov    0.000042574820827444476
 x_y_corr   0.0005042001844467462
 y_y_cov    0.08461122467974003
 y_y_corr   1
 x2_xy_cov  0.04188382281779374
 x2_xy_corr 0.630174342037994
 x2_y2_cov  -0.00030953725962542085
 x2_y2_corr -0.0034249088761121966
 mlr --opprint put '$x2=$x*$x; $xy=$x*$y; $y2=$y**2' \
   then stats2 -a linreg-ols,r2 -f x,y,y,y,xy,y2 -g a \
   data/medium
 a   x_y_ols_m             x_y_ols_b           x_y_ols_n x_y_r2                  y_y_ols_m y_y_ols_b y_y_ols_n y_y_r2 xy_y2_ols_m        xy_y2_ols_b         xy_y2_ols_n xy_y2_r2
 pan 0.01702551273681908   0.5004028922897639  2081      0.00028691820445814767  1         0         2081      1      0.8781320866715662 0.11908230147563566 2081        0.41749827377311266
 eks 0.0407804923685586    0.48140207967651016 1965      0.0016461239223448587   1         0         1965      1      0.8978728611690183 0.10734054433612333 1965        0.45563223864254526
 wye -0.03915349075204814  0.5255096523974456  1966      0.0015051268704373607   1         0         1966      1      0.8538317334220835 0.1267454301662969  1966        0.38991721818599295
 zee 0.0027812364960399147 0.5043070448033061  2047      0.000007751652858786137 1         0         2047      1      0.8524439912011013 0.12401684308018937 2047        0.39356598090006495
 hat -0.018620577041095078 0.5179005397264935  1941      0.0003520036646055585   1         0         1941      1      0.8412305086345014 0.13557328318623216 1941        0.3687944261732265

Here’s an example simple line-fit. The x and y fields of the data/medium dataset are just independent uniformly distributed on the unit interval. Here we remove half the data and fit a line to it.

# Prepare input data:
mlr filter '($x<.5 && $y<.5) || ($x>.5 && $y>.5)' data/medium > data/medium-squares

# Do a linear regression and examine coefficients:
mlr --ofs newline stats2 -a linreg-pca -f x,y data/medium-squares
x_y_pca_m=1.014419
x_y_pca_b=0.000308
x_y_pca_quality=0.861354

# Option 1 to apply the regression coefficients and produce a linear fit:
#   Set x_y_pca_m and x_y_pca_b as shell variables:
eval $(mlr --ofs newline stats2 -a linreg-pca -f x,y data/medium-squares)
#   In addition to x and y, make a new yfit which is the line fit, then plot
#   using your favorite tool:
mlr --onidx put '$yfit='$x_y_pca_m'*$x+'$x_y_pca_b then cut -x -f a,b,i data/medium-squares \
  | pgr -p -title 'linreg-pca example' -xmin 0 -xmax 1 -ymin 0 -ymax 1

# Option 2 to apply the regression coefficients and produce a linear fit: use --fit option
mlr --onidx stats2 -a linreg-pca --fit -f x,y then cut -f a,b,i data/medium-squares \
  | pgr -p -title 'linreg-pca example' -xmin 0 -xmax 1 -ymin 0 -ymax 1

I use pgr for plotting; here’s a screenshot.

_images/linreg-example.jpg

(Thanks Drew Kunas for a good conversation about PCA!)

Here’s an example estimating time-to-completion for a set of jobs. Input data comes from a log file, with number of work units left to do in the count field and accumulated seconds in the upsec field, labeled by the color field:

 head -n 10 data/multicountdown.dat
 upsec=0.002,color=green,count=1203
 upsec=0.083,color=red,count=3817
 upsec=0.188,color=red,count=3801
 upsec=0.395,color=blue,count=2697
 upsec=0.526,color=purple,count=953
 upsec=0.671,color=blue,count=2684
 upsec=0.899,color=purple,count=926
 upsec=0.912,color=red,count=3798
 upsec=1.093,color=blue,count=2662
 upsec=1.327,color=purple,count=917

We can do a linear regression on count remaining as a function of time: with c = m*u+b we want to find the time when the count goes to zero, i.e. u=-b/m.

 mlr --oxtab stats2 -a linreg-pca -f upsec,count -g color \
   then put '$donesec = -$upsec_count_pca_b/$upsec_count_pca_m' \
   data/multicountdown.dat
 color                   green
 upsec_count_pca_m       -32.75691673397728
 upsec_count_pca_b       1213.7227296044375
 upsec_count_pca_n       24
 upsec_count_pca_quality 0.9999839351341062
 donesec                 37.052410624028525

 color                   red
 upsec_count_pca_m       -37.367646434187435
 upsec_count_pca_b       3810.1334002923936
 upsec_count_pca_n       30
 upsec_count_pca_quality 0.9999894618183773
 donesec                 101.9634299688333

 color                   blue
 upsec_count_pca_m       -29.2312120633493
 upsec_count_pca_b       2698.9328203182517
 upsec_count_pca_n       25
 upsec_count_pca_quality 0.9999590846136102
 donesec                 92.33051350964094

 color                   purple
 upsec_count_pca_m       -39.03009744795354
 upsec_count_pca_b       979.9883413064914
 upsec_count_pca_n       21
 upsec_count_pca_quality 0.9999908956206317
 donesec                 25.10852919630297

step

 mlr step --help
 Usage: mlr step [options]
 Computes values dependent on the previous record, optionally grouped by category.
 Options:
 -a {delta,rsum,...}   Names of steppers: comma-separated, one or more of:
   delta    Compute differences in field(s) between successive records
   shift    Include value(s) in field(s) from previous record, if any
   from-first Compute differences in field(s) from first record
   ratio    Compute ratios in field(s) between successive records
   rsum     Compute running sums of field(s) between successive records
   counter  Count instances of field(s) between successive records
   ewma     Exponentially weighted moving average over successive records

 -f {a,b,c} Value-field names on which to compute statistics
 -g {d,e,f} Optional group-by-field names
 -F         Computes integerable things (e.g. counter) in floating point.
            As of Miller 6 this happens automatically, but the flag is accepted
            as a no-op for backward compatibility with Miller 5 and below.
 -d {x,y,z} Weights for ewma. 1 means current sample gets all weight (no
            smoothing), near under under 1 is light smoothing, near over 0 is
            heavy smoothing. Multiple weights may be specified, e.g.
            "mlr step -a ewma -f sys_load -d 0.01,0.1,0.9". Default if omitted
            is "-d 0.5".
 -o {a,b,c} Custom suffixes for EWMA output fields. If omitted, these default to
            the -d values. If supplied, the number of -o values must be the same
            as the number of -d values.
 -h|--help Show this message.

 Examples:
   mlr step -a rsum -f request_size
   mlr step -a delta -f request_size -g hostname
   mlr step -a ewma -d 0.1,0.9 -f x,y
   mlr step -a ewma -d 0.1,0.9 -o smooth,rough -f x,y
   mlr step -a ewma -d 0.1,0.9 -o smooth,rough -f x,y -g group_name

 Please see https://miller.readthedocs.io/en/latest/reference-verbs.html#filter or
 https://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average
 for more information on EWMA.

Most Miller commands are record-at-a-time, with the exception of stats1, stats2, and histogram which compute aggregate output. The step command is intermediate: it allows the option of adding fields which are functions of fields from previous records. Rsum is short for running sum.

 mlr --opprint step -a shift,delta,rsum,counter -f x data/medium | head -15
 a   b   i     x                      y                      x_shift                x_delta                 x_rsum             x_counter
 pan pan 1     0.3467901443380824     0.7268028627434533     -                      0                       0.3467901443380824 1
 eks pan 2     0.7586799647899636     0.5221511083334797     0.3467901443380824     0.41188982045188116     1.105470109128046  2
 wye wye 3     0.20460330576630303    0.33831852551664776    0.7586799647899636     -0.5540766590236605     1.3100734148943491 3
 eks wye 4     0.38139939387114097    0.13418874328430463    0.20460330576630303    0.17679608810483793     1.6914728087654902 4
 wye pan 5     0.5732889198020006     0.8636244699032729     0.38139939387114097    0.19188952593085962     2.264761728567491  5
 zee pan 6     0.5271261600918548     0.49322128674835697    0.5732889198020006     -0.04616275971014583    2.7918878886593457 6
 eks zee 7     0.6117840605678454     0.1878849191181694     0.5271261600918548     0.08465790047599064     3.403671949227191  7
 zee wye 8     0.5985540091064224     0.976181385699006      0.6117840605678454     -0.013230051461422976   4.0022259583336135 8
 hat wye 9     0.03144187646093577    0.7495507603507059     0.5985540091064224     -0.5671121326454867     4.033667834794549  9
 pan wye 10    0.5026260055412137     0.9526183602969864     0.03144187646093577    0.47118412908027796     4.536293840335763  10
 pan pan 11    0.7930488423451967     0.6505816637259333     0.5026260055412137     0.29042283680398295     5.32934268268096   11
 zee pan 12    0.3676141320555616     0.23614420670296965    0.7930488423451967     -0.4254347102896351     5.696956814736522  12
 eks pan 13    0.4915175580479536     0.7709126592971468     0.3676141320555616     0.12390342599239201     6.1884743727844755 13
 eks zee 14    0.5207382318405251     0.34141681118811673    0.4915175580479536     0.02922067379257154     6.709212604625001  14
 mlr --opprint step -a shift,delta,rsum,counter -f x -g a data/medium | head -15
 a   b   i     x                      y                      x_shift                x_delta                 x_rsum              x_counter
 pan pan 1     0.3467901443380824     0.7268028627434533     -                      0                       0.3467901443380824  1
 eks pan 2     0.7586799647899636     0.5221511083334797     -                      0                       0.7586799647899636  1
 wye wye 3     0.20460330576630303    0.33831852551664776    -                      0                       0.20460330576630303 1
 eks wye 4     0.38139939387114097    0.13418874328430463    0.7586799647899636     -0.3772805709188226     1.1400793586611044  2
 wye pan 5     0.5732889198020006     0.8636244699032729     0.20460330576630303    0.36868561403569755     0.7778922255683036  2
 zee pan 6     0.5271261600918548     0.49322128674835697    -                      0                       0.5271261600918548  1
 eks zee 7     0.6117840605678454     0.1878849191181694     0.38139939387114097    0.23038466669670443     1.75186341922895    3
 zee wye 8     0.5985540091064224     0.976181385699006      0.5271261600918548     0.07142784901456767     1.1256801691982772  2
 hat wye 9     0.03144187646093577    0.7495507603507059     -                      0                       0.03144187646093577 1
 pan wye 10    0.5026260055412137     0.9526183602969864     0.3467901443380824     0.1558358612031313      0.8494161498792961  2
 pan pan 11    0.7930488423451967     0.6505816637259333     0.5026260055412137     0.29042283680398295     1.6424649922244927  3
 zee pan 12    0.3676141320555616     0.23614420670296965    0.5985540091064224     -0.23093987705086083    1.4932943012538389  3
 eks pan 13    0.4915175580479536     0.7709126592971468     0.6117840605678454     -0.1202665025198918     2.2433809772769036  4
 eks zee 14    0.5207382318405251     0.34141681118811673    0.4915175580479536     0.02922067379257154     2.7641192091174287  5
 mlr --opprint step -a ewma -f x -d 0.1,0.9 data/medium | head -15
 a   b   i     x                      y                      x_ewma_0.1          x_ewma_0.9
 pan pan 1     0.3467901443380824     0.7268028627434533     0.3467901443380824  0.3467901443380824
 eks pan 2     0.7586799647899636     0.5221511083334797     0.3879791263832706  0.7174909827447755
 wye wye 3     0.20460330576630303    0.33831852551664776    0.36964154432157387 0.25589207346415027
 eks wye 4     0.38139939387114097    0.13418874328430463    0.37081732927653055 0.3688486618304419
 wye pan 5     0.5732889198020006     0.8636244699032729     0.3910644883290776  0.5528448940048447
 zee pan 6     0.5271261600918548     0.49322128674835697    0.4046706555053553  0.5296980334831537
 eks zee 7     0.6117840605678454     0.1878849191181694     0.4253819960116043  0.6035754578593763
 zee wye 8     0.5985540091064224     0.976181385699006      0.44269919732108615 0.5990561539817179
 hat wye 9     0.03144187646093577    0.7495507603507059     0.40157346523507115 0.08820330421301396
 pan wye 10    0.5026260055412137     0.9526183602969864     0.41167871926568544 0.46118373540839375
 pan pan 11    0.7930488423451967     0.6505816637259333     0.44981573157363663 0.7598623316515164
 zee pan 12    0.3676141320555616     0.23614420670296965    0.4415955716218291  0.4068389520151571
 eks pan 13    0.4915175580479536     0.7709126592971468     0.4465877702644416  0.48304969744467396
 eks zee 14    0.5207382318405251     0.34141681118811673    0.4540028164220499  0.51696937840094
 mlr --opprint step -a ewma -f x -d 0.1,0.9 -o smooth,rough data/medium | head -15
 a   b   i     x                      y                      x_ewma_smooth       x_ewma_rough
 pan pan 1     0.3467901443380824     0.7268028627434533     0.3467901443380824  0.3467901443380824
 eks pan 2     0.7586799647899636     0.5221511083334797     0.3879791263832706  0.7174909827447755
 wye wye 3     0.20460330576630303    0.33831852551664776    0.36964154432157387 0.25589207346415027
 eks wye 4     0.38139939387114097    0.13418874328430463    0.37081732927653055 0.3688486618304419
 wye pan 5     0.5732889198020006     0.8636244699032729     0.3910644883290776  0.5528448940048447
 zee pan 6     0.5271261600918548     0.49322128674835697    0.4046706555053553  0.5296980334831537
 eks zee 7     0.6117840605678454     0.1878849191181694     0.4253819960116043  0.6035754578593763
 zee wye 8     0.5985540091064224     0.976181385699006      0.44269919732108615 0.5990561539817179
 hat wye 9     0.03144187646093577    0.7495507603507059     0.40157346523507115 0.08820330421301396
 pan wye 10    0.5026260055412137     0.9526183602969864     0.41167871926568544 0.46118373540839375
 pan pan 11    0.7930488423451967     0.6505816637259333     0.44981573157363663 0.7598623316515164
 zee pan 12    0.3676141320555616     0.23614420670296965    0.4415955716218291  0.4068389520151571
 eks pan 13    0.4915175580479536     0.7709126592971468     0.4465877702644416  0.48304969744467396
 eks zee 14    0.5207382318405251     0.34141681118811673    0.4540028164220499  0.51696937840094

Example deriving uptime-delta from system uptime:

$ each 10 uptime | mlr -p step -a delta -f 11
...
20:08 up 36 days, 10:38, 5 users, load averages: 1.42 1.62 1.73 0.000000
20:08 up 36 days, 10:38, 5 users, load averages: 1.55 1.64 1.74 0.020000
20:08 up 36 days, 10:38, 7 users, load averages: 1.58 1.65 1.74 0.010000
20:08 up 36 days, 10:38, 9 users, load averages: 1.78 1.69 1.76 0.040000
20:08 up 36 days, 10:39, 9 users, load averages: 2.12 1.76 1.78 0.070000
20:08 up 36 days, 10:39, 9 users, load averages: 2.51 1.85 1.81 0.090000
20:08 up 36 days, 10:39, 8 users, load averages: 2.79 1.92 1.83 0.070000
20:08 up 36 days, 10:39, 4 users, load averages: 2.64 1.90 1.83 -0.020000

tac

 mlr tac --help
 Usage: mlr tac [options]
 Prints records in reverse order from the order in which they were encountered.
 Options:
 -h|--help Show this message.

Prints the records in the input stream in reverse order. Note: this requires Miller to retain all input records in memory before any output records are produced.

 mlr --icsv --opprint cat data/a.csv
 a b c
 1 2 3
 4 5 6
 mlr --icsv --opprint cat data/b.csv
 a b c
 7 8 9
 mlr --icsv --opprint tac data/a.csv data/b.csv
 a b c
 7 8 9
 4 5 6
 1 2 3
 mlr --icsv --opprint put '$filename=FILENAME' then tac data/a.csv data/b.csv
 a b c filename
 7 8 9 data/b.csv
 4 5 6 data/a.csv
 1 2 3 data/a.csv

tail

 mlr tail --help
 Usage: mlr tail [options]
 Passes through the last n records, optionally by category.
 Options:
 -g {a,b,c} Optional group-by-field names for head counts, e.g. a,b,c.
 -n {n} Head-count to print. Default 10.
 -h|--help Show this message.

Prints the last n records in the input stream, optionally by category.

 mlr --opprint tail -n 4 data/colored-shapes.dkvp
 color  shape    flag i     u                    v                   w                   x
 blue   square   1    99974 0.6189062525431605   0.2637962404841453  0.5311465405784674  6.210738209085753
 blue   triangle 0    99976 0.008110504040268474 0.8267274952432482  0.4732962944898885  6.146956761817328
 yellow triangle 0    99990 0.3839424618160777   0.55952913620132    0.5113763011485609  4.307973891915119
 yellow circle   1    99994 0.764950884927175    0.25284227383991364 0.49969878539567425 5.013809741826425
 mlr --opprint tail -n 1 -g shape data/colored-shapes.dkvp
 color  shape    flag i     u                  v                   w                   x
 yellow triangle 0    99990 0.3839424618160777 0.55952913620132    0.5113763011485609  4.307973891915119
 blue   square   1    99974 0.6189062525431605 0.2637962404841453  0.5311465405784674  6.210738209085753
 yellow circle   1    99994 0.764950884927175  0.25284227383991364 0.49969878539567425 5.013809741826425

tee

 mlr tee --help
 Usage: mlr tee [options] {filename}
 Options:
 -a    Append to existing file, if any, rather than overwriting.
 -p    Treat filename as a pipe-to command.
 Any of the output-format command-line flags (see mlr -h). Example: using
   mlr --icsv --opprint put '...' then tee --ojson ./mytap.dat then stats1 ...
 the input is CSV, the output is pretty-print tabular, but the tee-file output
 is written in JSON format.

 -h|--help Show this message.

template

 mlr template --help
 Usage: mlr template [options]
 Places input-record fields in the order specified by list of column names.
 If the input record is missing a specified field, it will be filled with the fill-with.
 If the input record possesses an unspecified field, it will be discarded.
 Options:
  -f {a,b,c} Comma-separated field names for template, e.g. a,b,c.
  -t {filename} CSV file whose header line will be used for template.
 --fill-with {filler string}  What to fill absent fields with. Defaults to the empty string.
 -h|--help Show this message.
 Example:
 * Specified fields are a,b,c.
 * Input record is c=3,a=1,f=6.
 * Output record is a=1,b=,c=3.

top

 mlr top --help
 Usage: mlr top [options]
 -f {a,b,c}    Value-field names for top counts.
 -g {d,e,f}    Optional group-by-field names for top counts.
 -n {count}    How many records to print per category; default 1.
 -a            Print all fields for top-value records; default is
               to print only value and group-by fields. Requires a single
               value-field name only.
 --min         Print top smallest values; default is top largest values.
 -F            Keep top values as floats even if they look like integers.
 -o {name}     Field name for output indices. Default "top_idx".
 Prints the n records with smallest/largest values at specified fields,
 optionally by category.

Note that top is distinct from headhead shows fields which appear first in the data stream; top shows fields which are numerically largest (or smallest).

 mlr --opprint top -n 4 -f x data/medium
 top_idx x_top
 1       0.999952670371898
 2       0.9998228522652893
 3       0.99973332327313
 4       0.9995625801977208
 mlr --opprint top -n 4 -f x -o someothername data/medium
 someothername x_top
 1             0.999952670371898
 2             0.9998228522652893
 3             0.99973332327313
 4             0.9995625801977208
 mlr --opprint top -n 2 -f x -g a then sort -f a data/medium
 a   top_idx x_top
 eks 1       0.9988110946859143
 eks 2       0.9985342548358704
 hat 1       0.999952670371898
 hat 2       0.99973332327313
 pan 1       0.9994029107062516
 pan 2       0.9990440068491747
 wye 1       0.9998228522652893
 wye 2       0.9992635865771493
 zee 1       0.9994904324789629
 zee 2       0.9994378171787394

uniq

 mlr uniq --help
 Usage: mlr uniq [options]
 Prints distinct values for specified field names. With -c, same as
 count-distinct. For uniq, -f is a synonym for -g.

 Options:
 -g {d,e,f}    Group-by-field names for uniq counts.
 -c            Show repeat counts in addition to unique values.
 -n            Show only the number of distinct values.
 -o {name}     Field name for output count. Default "count".
 -a            Output each unique record only once. Incompatible with -g.
               With -c, produces unique records, with repeat counts for each.
               With -n, produces only one record which is the unique-record count.
               With neither -c nor -n, produces unique records.

There are two main ways to use mlr uniq: the first way is with -g to specify group-by columns.

 wc -l data/colored-shapes.dkvp
    10078 data/colored-shapes.dkvp
 mlr uniq -g color,shape data/colored-shapes.dkvp
 color=yellow,shape=triangle
 color=red,shape=square
 color=red,shape=circle
 color=purple,shape=triangle
 color=yellow,shape=circle
 color=purple,shape=square
 color=yellow,shape=square
 color=red,shape=triangle
 color=green,shape=triangle
 color=green,shape=square
 color=blue,shape=circle
 color=blue,shape=triangle
 color=purple,shape=circle
 color=blue,shape=square
 color=green,shape=circle
 color=orange,shape=triangle
 color=orange,shape=square
 color=orange,shape=circle
 mlr --opprint uniq -g color,shape -c then sort -f color,shape data/colored-shapes.dkvp
 color  shape    count
 blue   circle   384
 blue   square   589
 blue   triangle 497
 green  circle   287
 green  square   454
 green  triangle 368
 orange circle   68
 orange square   128
 orange triangle 107
 purple circle   289
 purple square   481
 purple triangle 372
 red    circle   1207
 red    square   1874
 red    triangle 1560
 yellow circle   356
 yellow square   589
 yellow triangle 468
 mlr --opprint uniq -g color,shape -c -o someothername \
   then sort -nr someothername \
   data/colored-shapes.dkvp
 color  shape    someothername
 red    square   1874
 red    triangle 1560
 red    circle   1207
 yellow square   589
 blue   square   589
 blue   triangle 497
 purple square   481
 yellow triangle 468
 green  square   454
 blue   circle   384
 purple triangle 372
 green  triangle 368
 yellow circle   356
 purple circle   289
 green  circle   287
 orange square   128
 orange triangle 107
 orange circle   68
 mlr --opprint uniq -n -g color,shape data/colored-shapes.dkvp
 count
 18

The second main way to use mlr uniq is without group-by columns, using -a instead:

 cat data/repeats.dkvp
 color=red,shape=square,flag=0
 color=purple,shape=triangle,flag=0
 color=yellow,shape=circle,flag=1
 color=red,shape=circle,flag=1
 color=red,shape=square,flag=0
 color=yellow,shape=circle,flag=1
 color=red,shape=square,flag=0
 color=red,shape=square,flag=0
 color=yellow,shape=circle,flag=1
 color=red,shape=circle,flag=1
 color=yellow,shape=circle,flag=1
 color=yellow,shape=circle,flag=1
 color=purple,shape=triangle,flag=0
 color=yellow,shape=circle,flag=1
 color=yellow,shape=circle,flag=1
 color=red,shape=circle,flag=1
 color=red,shape=square,flag=0
 color=purple,shape=triangle,flag=0
 color=yellow,shape=circle,flag=1
 color=red,shape=square,flag=0
 color=purple,shape=square,flag=0
 color=red,shape=square,flag=0
 color=red,shape=square,flag=1
 color=red,shape=square,flag=0
 color=red,shape=square,flag=0
 color=purple,shape=triangle,flag=0
 color=red,shape=square,flag=0
 color=purple,shape=triangle,flag=0
 color=red,shape=square,flag=0
 color=red,shape=square,flag=0
 color=purple,shape=square,flag=0
 color=red,shape=square,flag=0
 color=red,shape=square,flag=0
 color=purple,shape=triangle,flag=0
 color=yellow,shape=triangle,flag=1
 color=purple,shape=square,flag=0
 color=yellow,shape=circle,flag=1
 color=purple,shape=triangle,flag=0
 color=red,shape=circle,flag=1
 color=purple,shape=triangle,flag=0
 color=purple,shape=triangle,flag=0
 color=red,shape=square,flag=0
 color=red,shape=circle,flag=1
 color=red,shape=square,flag=1
 color=red,shape=square,flag=0
 color=red,shape=circle,flag=1
 color=purple,shape=square,flag=0
 color=purple,shape=square,flag=0
 color=red,shape=square,flag=1
 color=purple,shape=triangle,flag=0
 color=purple,shape=triangle,flag=0
 color=purple,shape=square,flag=0
 color=yellow,shape=circle,flag=1
 color=red,shape=square,flag=0
 color=yellow,shape=triangle,flag=1
 color=yellow,shape=circle,flag=1
 color=purple,shape=square,flag=0
 wc -l data/repeats.dkvp
       57 data/repeats.dkvp
 mlr --opprint uniq -a data/repeats.dkvp
 color  shape    flag
 red    square   0
 purple triangle 0
 yellow circle   1
 red    circle   1
 purple square   0
 red    square   1
 yellow triangle 1
 mlr --opprint uniq -a -n data/repeats.dkvp
 count
 7
 mlr --opprint uniq -a -c data/repeats.dkvp
 count color  shape    flag
 17    red    square   0
 11    purple triangle 0
 11    yellow circle   1
 6     red    circle   1
 7     purple square   0
 3     red    square   1
 2     yellow triangle 1

unsparsify

 mlr unsparsify --help
 Usage: mlr unsparsify [options]
 Prints records with the union of field names over all input records.
 For field names absent in a given record but present in others, fills in
 a value. This verb retains all input before producing any output.
 Options:
 --fill-with {filler string}  What to fill absent fields with. Defaults to
                              the empty string.
 -f {a,b,c} Specify field names to be operated on. Any other fields won't be
            modified, and operation will be streaming.
 -h|--help  Show this message.
 Example: if the input is two records, one being 'a=1,b=2' and the other
 being 'b=3,c=4', then the output is the two records 'a=1,b=2,c=' and
 'a=,b=3,c=4'.

Examples:

 cat data/sparse.json
 {"a":1,"b":2,"v":3}
 {"u":1,"b":2}
 {"a":1,"v":2,"x":3}
 {"v":1,"w":2}
 mlr --json unsparsify data/sparse.json
 {
   "a": 1,
   "b": 2,
   "v": 3,
   "u": "",
   "x": "",
   "w": ""
 }
 {
   "a": "",
   "b": 2,
   "v": "",
   "u": 1,
   "x": "",
   "w": ""
 }
 {
   "a": 1,
   "b": "",
   "v": 2,
   "u": "",
   "x": 3,
   "w": ""
 }
 {
   "a": "",
   "b": "",
   "v": 1,
   "u": "",
   "x": "",
   "w": 2
 }
 mlr --ijson --opprint unsparsify data/sparse.json
 a b v u x w
 1 2 3 - - -
 - 2 - 1 - -
 1 - 2 - 3 -
 - - 1 - - 2
 mlr --ijson --opprint unsparsify --fill-with missing data/sparse.json
 a       b       v       u       x       w
 1       2       3       missing missing missing
 missing 2       missing 1       missing missing
 1       missing 2       missing 3       missing
 missing missing 1       missing missing 2
 mlr --ijson --opprint unsparsify -f a,b,u data/sparse.json
 a b v u
 1 2 3 -

 u b a
 1 2 -

 a v x b u
 1 2 3 - -

 v w a b u
 1 2 - - -
 mlr --ijson --opprint unsparsify -f a,b,u,v,w,x then regularize data/sparse.json
 a b v u w x
 1 2 3 - - -
 - 2 - 1 - -
 1 - 2 - - 3
 - - 1 - 2 -