headscale/hscontrol/policy/v2/policy_test.go
Kristoffer Dalby c40d547f93 policy: fix asymmetric peer visibility with autogroup:self
When autogroup:self was combined with other ACL rules (e.g., group:admin
-> *:*), tagged nodes became invisible to users who should have access.

The BuildPeerMap function had two code paths:
- Global filter path: used symmetric OR logic (if either can access, both
  see each other)
- Autogroup:self path: used asymmetric logic (only add peer if that
  specific direction has access)

This caused problems with one-way rules like admin -> tagged-server. The
admin could access the server, but since the server couldn't access the
admin, neither was added to the other's peer list.

Fix by using symmetric visibility in the autogroup:self path, matching
the global filter path behavior: if either node can access the other,
both should see each other as peers.

Credit: vdovhanych <vdovhanych@users.noreply.github.com>

Fixes #2990
2026-01-20 17:10:34 +00:00

890 lines
29 KiB
Go

package v2
import (
"net/netip"
"slices"
"testing"
"github.com/google/go-cmp/cmp"
"github.com/juanfont/headscale/hscontrol/policy/matcher"
"github.com/juanfont/headscale/hscontrol/types"
"github.com/stretchr/testify/require"
"gorm.io/gorm"
"tailscale.com/tailcfg"
"tailscale.com/types/ptr"
)
func node(name, ipv4, ipv6 string, user types.User, hostinfo *tailcfg.Hostinfo) *types.Node {
return &types.Node{
ID: 0,
Hostname: name,
IPv4: ap(ipv4),
IPv6: ap(ipv6),
User: ptr.To(user),
UserID: ptr.To(user.ID),
Hostinfo: hostinfo,
}
}
func TestPolicyManager(t *testing.T) {
users := types.Users{
{Model: gorm.Model{ID: 1}, Name: "testuser", Email: "testuser@headscale.net"},
{Model: gorm.Model{ID: 2}, Name: "otheruser", Email: "otheruser@headscale.net"},
}
tests := []struct {
name string
pol string
nodes types.Nodes
wantFilter []tailcfg.FilterRule
wantMatchers []matcher.Match
}{
{
name: "empty-policy",
pol: "{}",
nodes: types.Nodes{},
wantFilter: tailcfg.FilterAllowAll,
wantMatchers: matcher.MatchesFromFilterRules(tailcfg.FilterAllowAll),
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
pm, err := NewPolicyManager([]byte(tt.pol), users, tt.nodes.ViewSlice())
require.NoError(t, err)
filter, matchers := pm.Filter()
if diff := cmp.Diff(tt.wantFilter, filter); diff != "" {
t.Errorf("Filter() filter mismatch (-want +got):\n%s", diff)
}
if diff := cmp.Diff(
tt.wantMatchers,
matchers,
cmp.AllowUnexported(matcher.Match{}),
); diff != "" {
t.Errorf("Filter() matchers mismatch (-want +got):\n%s", diff)
}
// TODO(kradalby): Test SSH Policy
})
}
}
func TestInvalidateAutogroupSelfCache(t *testing.T) {
users := types.Users{
{Model: gorm.Model{ID: 1}, Name: "user1", Email: "user1@headscale.net"},
{Model: gorm.Model{ID: 2}, Name: "user2", Email: "user2@headscale.net"},
{Model: gorm.Model{ID: 3}, Name: "user3", Email: "user3@headscale.net"},
}
policy := `{
"acls": [
{
"action": "accept",
"src": ["autogroup:member"],
"dst": ["autogroup:self:*"]
}
]
}`
initialNodes := types.Nodes{
node("user1-node1", "100.64.0.1", "fd7a:115c:a1e0::1", users[0], nil),
node("user1-node2", "100.64.0.2", "fd7a:115c:a1e0::2", users[0], nil),
node("user2-node1", "100.64.0.3", "fd7a:115c:a1e0::3", users[1], nil),
node("user3-node1", "100.64.0.4", "fd7a:115c:a1e0::4", users[2], nil),
}
for i, n := range initialNodes {
n.ID = types.NodeID(i + 1)
}
pm, err := NewPolicyManager([]byte(policy), users, initialNodes.ViewSlice())
require.NoError(t, err)
// Add to cache by calling FilterForNode for each node
for _, n := range initialNodes {
_, err := pm.FilterForNode(n.View())
require.NoError(t, err)
}
require.Equal(t, len(initialNodes), len(pm.filterRulesMap))
tests := []struct {
name string
newNodes types.Nodes
expectedCleared int
description string
}{
{
name: "no_changes",
newNodes: types.Nodes{
node("user1-node1", "100.64.0.1", "fd7a:115c:a1e0::1", users[0], nil),
node("user1-node2", "100.64.0.2", "fd7a:115c:a1e0::2", users[0], nil),
node("user2-node1", "100.64.0.3", "fd7a:115c:a1e0::3", users[1], nil),
node("user3-node1", "100.64.0.4", "fd7a:115c:a1e0::4", users[2], nil),
},
expectedCleared: 0,
description: "No changes should clear no cache entries",
},
{
name: "node_added",
newNodes: types.Nodes{
node("user1-node1", "100.64.0.1", "fd7a:115c:a1e0::1", users[0], nil),
node("user1-node2", "100.64.0.2", "fd7a:115c:a1e0::2", users[0], nil),
node("user1-node3", "100.64.0.5", "fd7a:115c:a1e0::5", users[0], nil), // New node
node("user2-node1", "100.64.0.3", "fd7a:115c:a1e0::3", users[1], nil),
node("user3-node1", "100.64.0.4", "fd7a:115c:a1e0::4", users[2], nil),
},
expectedCleared: 2, // user1's existing nodes should be cleared
description: "Adding a node should clear cache for that user's existing nodes",
},
{
name: "node_removed",
newNodes: types.Nodes{
node("user1-node1", "100.64.0.1", "fd7a:115c:a1e0::1", users[0], nil),
// user1-node2 removed
node("user2-node1", "100.64.0.3", "fd7a:115c:a1e0::3", users[1], nil),
node("user3-node1", "100.64.0.4", "fd7a:115c:a1e0::4", users[2], nil),
},
expectedCleared: 2, // user1's remaining node + removed node should be cleared
description: "Removing a node should clear cache for that user's remaining nodes",
},
{
name: "user_changed",
newNodes: types.Nodes{
node("user1-node1", "100.64.0.1", "fd7a:115c:a1e0::1", users[0], nil),
node("user1-node2", "100.64.0.2", "fd7a:115c:a1e0::2", users[2], nil), // Changed to user3
node("user2-node1", "100.64.0.3", "fd7a:115c:a1e0::3", users[1], nil),
node("user3-node1", "100.64.0.4", "fd7a:115c:a1e0::4", users[2], nil),
},
expectedCleared: 3, // user1's node + user2's node + user3's nodes should be cleared
description: "Changing a node's user should clear cache for both old and new users",
},
{
name: "ip_changed",
newNodes: types.Nodes{
node("user1-node1", "100.64.0.10", "fd7a:115c:a1e0::10", users[0], nil), // IP changed
node("user1-node2", "100.64.0.2", "fd7a:115c:a1e0::2", users[0], nil),
node("user2-node1", "100.64.0.3", "fd7a:115c:a1e0::3", users[1], nil),
node("user3-node1", "100.64.0.4", "fd7a:115c:a1e0::4", users[2], nil),
},
expectedCleared: 2, // user1's nodes should be cleared
description: "Changing a node's IP should clear cache for that user's nodes",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
for i, n := range tt.newNodes {
found := false
for _, origNode := range initialNodes {
if n.Hostname == origNode.Hostname {
n.ID = origNode.ID
found = true
break
}
}
if !found {
n.ID = types.NodeID(len(initialNodes) + i + 1)
}
}
pm.filterRulesMap = make(map[types.NodeID][]tailcfg.FilterRule)
for _, n := range initialNodes {
_, err := pm.FilterForNode(n.View())
require.NoError(t, err)
}
initialCacheSize := len(pm.filterRulesMap)
require.Equal(t, len(initialNodes), initialCacheSize)
pm.invalidateAutogroupSelfCache(initialNodes.ViewSlice(), tt.newNodes.ViewSlice())
// Verify the expected number of cache entries were cleared
finalCacheSize := len(pm.filterRulesMap)
clearedEntries := initialCacheSize - finalCacheSize
require.Equal(t, tt.expectedCleared, clearedEntries, tt.description)
})
}
}
// TestInvalidateGlobalPolicyCache tests the cache invalidation logic for global policies.
func TestInvalidateGlobalPolicyCache(t *testing.T) {
mustIPPtr := func(s string) *netip.Addr {
ip := netip.MustParseAddr(s)
return &ip
}
tests := []struct {
name string
oldNodes types.Nodes
newNodes types.Nodes
initialCache map[types.NodeID][]tailcfg.FilterRule
expectedCacheAfter map[types.NodeID]bool // true = should exist, false = should not exist
}{
{
name: "node property changed - invalidates only that node",
oldNodes: types.Nodes{
&types.Node{ID: 1, IPv4: mustIPPtr("100.64.0.1")},
&types.Node{ID: 2, IPv4: mustIPPtr("100.64.0.2")},
},
newNodes: types.Nodes{
&types.Node{ID: 1, IPv4: mustIPPtr("100.64.0.99")}, // Changed
&types.Node{ID: 2, IPv4: mustIPPtr("100.64.0.2")}, // Unchanged
},
initialCache: map[types.NodeID][]tailcfg.FilterRule{
1: {},
2: {},
},
expectedCacheAfter: map[types.NodeID]bool{
1: false, // Invalidated
2: true, // Preserved
},
},
{
name: "multiple nodes changed",
oldNodes: types.Nodes{
&types.Node{ID: 1, IPv4: mustIPPtr("100.64.0.1")},
&types.Node{ID: 2, IPv4: mustIPPtr("100.64.0.2")},
&types.Node{ID: 3, IPv4: mustIPPtr("100.64.0.3")},
},
newNodes: types.Nodes{
&types.Node{ID: 1, IPv4: mustIPPtr("100.64.0.99")}, // Changed
&types.Node{ID: 2, IPv4: mustIPPtr("100.64.0.2")}, // Unchanged
&types.Node{ID: 3, IPv4: mustIPPtr("100.64.0.88")}, // Changed
},
initialCache: map[types.NodeID][]tailcfg.FilterRule{
1: {},
2: {},
3: {},
},
expectedCacheAfter: map[types.NodeID]bool{
1: false, // Invalidated
2: true, // Preserved
3: false, // Invalidated
},
},
{
name: "node deleted - removes from cache",
oldNodes: types.Nodes{
&types.Node{ID: 1, IPv4: mustIPPtr("100.64.0.1")},
&types.Node{ID: 2, IPv4: mustIPPtr("100.64.0.2")},
},
newNodes: types.Nodes{
&types.Node{ID: 2, IPv4: mustIPPtr("100.64.0.2")},
},
initialCache: map[types.NodeID][]tailcfg.FilterRule{
1: {},
2: {},
},
expectedCacheAfter: map[types.NodeID]bool{
1: false, // Deleted
2: true, // Preserved
},
},
{
name: "node added - no cache invalidation needed",
oldNodes: types.Nodes{
&types.Node{ID: 1, IPv4: mustIPPtr("100.64.0.1")},
},
newNodes: types.Nodes{
&types.Node{ID: 1, IPv4: mustIPPtr("100.64.0.1")},
&types.Node{ID: 2, IPv4: mustIPPtr("100.64.0.2")}, // New
},
initialCache: map[types.NodeID][]tailcfg.FilterRule{
1: {},
},
expectedCacheAfter: map[types.NodeID]bool{
1: true, // Preserved
2: false, // Not in cache (new node)
},
},
{
name: "no changes - preserves all cache",
oldNodes: types.Nodes{
&types.Node{ID: 1, IPv4: mustIPPtr("100.64.0.1")},
&types.Node{ID: 2, IPv4: mustIPPtr("100.64.0.2")},
},
newNodes: types.Nodes{
&types.Node{ID: 1, IPv4: mustIPPtr("100.64.0.1")},
&types.Node{ID: 2, IPv4: mustIPPtr("100.64.0.2")},
},
initialCache: map[types.NodeID][]tailcfg.FilterRule{
1: {},
2: {},
},
expectedCacheAfter: map[types.NodeID]bool{
1: true,
2: true,
},
},
{
name: "routes changed - invalidates that node only",
oldNodes: types.Nodes{
&types.Node{
ID: 1,
IPv4: mustIPPtr("100.64.0.1"),
Hostinfo: &tailcfg.Hostinfo{RoutableIPs: []netip.Prefix{netip.MustParsePrefix("10.0.0.0/24"), netip.MustParsePrefix("192.168.0.0/24")}},
ApprovedRoutes: []netip.Prefix{netip.MustParsePrefix("10.0.0.0/24")},
},
&types.Node{ID: 2, IPv4: mustIPPtr("100.64.0.2")},
},
newNodes: types.Nodes{
&types.Node{
ID: 1,
IPv4: mustIPPtr("100.64.0.1"),
Hostinfo: &tailcfg.Hostinfo{RoutableIPs: []netip.Prefix{netip.MustParsePrefix("10.0.0.0/24"), netip.MustParsePrefix("192.168.0.0/24")}},
ApprovedRoutes: []netip.Prefix{netip.MustParsePrefix("192.168.0.0/24")}, // Changed
},
&types.Node{ID: 2, IPv4: mustIPPtr("100.64.0.2")},
},
initialCache: map[types.NodeID][]tailcfg.FilterRule{
1: {},
2: {},
},
expectedCacheAfter: map[types.NodeID]bool{
1: false, // Invalidated
2: true, // Preserved
},
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
pm := &PolicyManager{
nodes: tt.oldNodes.ViewSlice(),
filterRulesMap: tt.initialCache,
usesAutogroupSelf: false,
}
pm.invalidateGlobalPolicyCache(tt.newNodes.ViewSlice())
// Verify cache state
for nodeID, shouldExist := range tt.expectedCacheAfter {
_, exists := pm.filterRulesMap[nodeID]
require.Equal(t, shouldExist, exists, "node %d cache existence mismatch", nodeID)
}
})
}
}
// TestAutogroupSelfReducedVsUnreducedRules verifies that:
// 1. BuildPeerMap uses unreduced compiled rules for determining peer relationships
// 2. FilterForNode returns reduced compiled rules for packet filters
func TestAutogroupSelfReducedVsUnreducedRules(t *testing.T) {
user1 := types.User{Model: gorm.Model{ID: 1}, Name: "user1", Email: "user1@headscale.net"}
user2 := types.User{Model: gorm.Model{ID: 2}, Name: "user2", Email: "user2@headscale.net"}
users := types.Users{user1, user2}
// Create two nodes
node1 := node("node1", "100.64.0.1", "fd7a:115c:a1e0::1", user1, nil)
node1.ID = 1
node2 := node("node2", "100.64.0.2", "fd7a:115c:a1e0::2", user2, nil)
node2.ID = 2
nodes := types.Nodes{node1, node2}
// Policy with autogroup:self - all members can reach their own devices
policyStr := `{
"acls": [
{
"action": "accept",
"src": ["autogroup:member"],
"dst": ["autogroup:self:*"]
}
]
}`
pm, err := NewPolicyManager([]byte(policyStr), users, nodes.ViewSlice())
require.NoError(t, err)
require.True(t, pm.usesAutogroupSelf, "policy should use autogroup:self")
// Test FilterForNode returns reduced rules
// For node1: should have rules where node1 is in destinations (its own IP)
filterNode1, err := pm.FilterForNode(nodes[0].View())
require.NoError(t, err)
// For node2: should have rules where node2 is in destinations (its own IP)
filterNode2, err := pm.FilterForNode(nodes[1].View())
require.NoError(t, err)
// FilterForNode should return reduced rules - verify they only contain the node's own IPs as destinations
// For node1, destinations should only be node1's IPs
node1IPs := []string{"100.64.0.1/32", "100.64.0.1", "fd7a:115c:a1e0::1/128", "fd7a:115c:a1e0::1"}
for _, rule := range filterNode1 {
for _, dst := range rule.DstPorts {
require.Contains(t, node1IPs, dst.IP,
"node1 filter should only contain node1's IPs as destinations")
}
}
// For node2, destinations should only be node2's IPs
node2IPs := []string{"100.64.0.2/32", "100.64.0.2", "fd7a:115c:a1e0::2/128", "fd7a:115c:a1e0::2"}
for _, rule := range filterNode2 {
for _, dst := range rule.DstPorts {
require.Contains(t, node2IPs, dst.IP,
"node2 filter should only contain node2's IPs as destinations")
}
}
// Test BuildPeerMap uses unreduced rules
peerMap := pm.BuildPeerMap(nodes.ViewSlice())
// According to the policy, user1 can reach autogroup:self (which expands to node1's own IPs for node1)
// So node1 should be able to reach itself, but since we're looking at peer relationships,
// node1 should NOT have itself in the peer map (nodes don't peer with themselves)
// node2 should also not have any peers since user2 has no rules allowing it to reach anyone
// Verify peer relationships based on unreduced rules
// With unreduced rules, BuildPeerMap can properly determine that:
// - node1 can access autogroup:self (its own IPs)
// - node2 cannot access node1
require.Empty(t, peerMap[node1.ID], "node1 should have no peers (can only reach itself)")
require.Empty(t, peerMap[node2.ID], "node2 should have no peers")
}
// When separate ACL rules exist (one with autogroup:self, one with tag:router),
// the autogroup:self rule should not prevent the tag:router rule from working.
// This ensures that autogroup:self doesn't interfere with other ACL rules.
func TestAutogroupSelfWithOtherRules(t *testing.T) {
users := types.Users{
{Model: gorm.Model{ID: 1}, Name: "test-1", Email: "test-1@example.com"},
{Model: gorm.Model{ID: 2}, Name: "test-2", Email: "test-2@example.com"},
}
// test-1 has a regular device
test1Node := &types.Node{
ID: 1,
Hostname: "test-1-device",
IPv4: ap("100.64.0.1"),
IPv6: ap("fd7a:115c:a1e0::1"),
User: ptr.To(users[0]),
UserID: ptr.To(users[0].ID),
Hostinfo: &tailcfg.Hostinfo{},
}
// test-2 has a router device with tag:node-router
test2RouterNode := &types.Node{
ID: 2,
Hostname: "test-2-router",
IPv4: ap("100.64.0.2"),
IPv6: ap("fd7a:115c:a1e0::2"),
User: ptr.To(users[1]),
UserID: ptr.To(users[1].ID),
Tags: []string{"tag:node-router"},
Hostinfo: &tailcfg.Hostinfo{},
}
nodes := types.Nodes{test1Node, test2RouterNode}
// This matches the exact policy from issue #2838:
// - First rule: autogroup:member -> autogroup:self (allows users to see their own devices)
// - Second rule: group:home -> tag:node-router (should allow group members to see router)
policy := `{
"groups": {
"group:home": ["test-1@example.com", "test-2@example.com"]
},
"tagOwners": {
"tag:node-router": ["group:home"]
},
"acls": [
{
"action": "accept",
"src": ["autogroup:member"],
"dst": ["autogroup:self:*"]
},
{
"action": "accept",
"src": ["group:home"],
"dst": ["tag:node-router:*"]
}
]
}`
pm, err := NewPolicyManager([]byte(policy), users, nodes.ViewSlice())
require.NoError(t, err)
peerMap := pm.BuildPeerMap(nodes.ViewSlice())
// test-1 (in group:home) should see:
// 1. Their own node (from autogroup:self rule)
// 2. The router node (from group:home -> tag:node-router rule)
test1Peers := peerMap[test1Node.ID]
// Verify test-1 can see the router (group:home -> tag:node-router rule)
require.True(t, slices.ContainsFunc(test1Peers, func(n types.NodeView) bool {
return n.ID() == test2RouterNode.ID
}), "test-1 should see test-2's router via group:home -> tag:node-router rule, even when autogroup:self rule exists (issue #2838)")
// Verify that test-1 has filter rules (including autogroup:self and tag:node-router access)
rules, err := pm.FilterForNode(test1Node.View())
require.NoError(t, err)
require.NotEmpty(t, rules, "test-1 should have filter rules from both ACL rules")
}
// TestAutogroupSelfPolicyUpdateTriggersMapResponse verifies that when a policy with
// autogroup:self is updated, SetPolicy returns true to trigger MapResponse updates,
// even if the global filter hash didn't change (which is always empty for autogroup:self).
// This fixes the issue where policy updates would clear caches but not trigger updates,
// leaving nodes with stale filter rules until reconnect.
func TestAutogroupSelfPolicyUpdateTriggersMapResponse(t *testing.T) {
users := types.Users{
{Model: gorm.Model{ID: 1}, Name: "test-1", Email: "test-1@example.com"},
{Model: gorm.Model{ID: 2}, Name: "test-2", Email: "test-2@example.com"},
}
test1Node := &types.Node{
ID: 1,
Hostname: "test-1-device",
IPv4: ap("100.64.0.1"),
IPv6: ap("fd7a:115c:a1e0::1"),
User: ptr.To(users[0]),
UserID: ptr.To(users[0].ID),
Hostinfo: &tailcfg.Hostinfo{},
}
test2Node := &types.Node{
ID: 2,
Hostname: "test-2-device",
IPv4: ap("100.64.0.2"),
IPv6: ap("fd7a:115c:a1e0::2"),
User: ptr.To(users[1]),
UserID: ptr.To(users[1].ID),
Hostinfo: &tailcfg.Hostinfo{},
}
nodes := types.Nodes{test1Node, test2Node}
// Initial policy with autogroup:self
initialPolicy := `{
"acls": [
{
"action": "accept",
"src": ["autogroup:member"],
"dst": ["autogroup:self:*"]
}
]
}`
pm, err := NewPolicyManager([]byte(initialPolicy), users, nodes.ViewSlice())
require.NoError(t, err)
require.True(t, pm.usesAutogroupSelf, "policy should use autogroup:self")
// Get initial filter rules for test-1 (should be cached)
rules1, err := pm.FilterForNode(test1Node.View())
require.NoError(t, err)
require.NotEmpty(t, rules1, "test-1 should have filter rules")
// Update policy with a different ACL that still results in empty global filter
// (only autogroup:self rules, which compile to empty global filter)
// We add a comment/description change by adding groups (which don't affect filter compilation)
updatedPolicy := `{
"groups": {
"group:test": ["test-1@example.com"]
},
"acls": [
{
"action": "accept",
"src": ["autogroup:member"],
"dst": ["autogroup:self:*"]
}
]
}`
// SetPolicy should return true even though global filter hash didn't change
policyChanged, err := pm.SetPolicy([]byte(updatedPolicy))
require.NoError(t, err)
require.True(t, policyChanged, "SetPolicy should return true when policy content changes, even if global filter hash unchanged (autogroup:self)")
// Verify that caches were cleared and new rules are generated
// The cache should be empty, so FilterForNode will recompile
rules2, err := pm.FilterForNode(test1Node.View())
require.NoError(t, err)
require.NotEmpty(t, rules2, "test-1 should have filter rules after policy update")
// Verify that the policy hash tracking works - a second identical update should return false
policyChanged2, err := pm.SetPolicy([]byte(updatedPolicy))
require.NoError(t, err)
require.False(t, policyChanged2, "SetPolicy should return false when policy content hasn't changed")
}
// TestTagPropagationToPeerMap tests that when a node's tags change,
// the peer map is correctly updated. This is a regression test for
// https://github.com/juanfont/headscale/issues/2389
func TestTagPropagationToPeerMap(t *testing.T) {
users := types.Users{
{Model: gorm.Model{ID: 1}, Name: "user1", Email: "user1@headscale.net"},
{Model: gorm.Model{ID: 2}, Name: "user2", Email: "user2@headscale.net"},
}
// Policy: user2 can access tag:web nodes
policy := `{
"tagOwners": {
"tag:web": ["user1@headscale.net"],
"tag:internal": ["user1@headscale.net"]
},
"acls": [
{
"action": "accept",
"src": ["user2@headscale.net"],
"dst": ["user2@headscale.net:*"]
},
{
"action": "accept",
"src": ["user2@headscale.net"],
"dst": ["tag:web:*"]
},
{
"action": "accept",
"src": ["tag:web"],
"dst": ["user2@headscale.net:*"]
}
]
}`
// user1's node starts with tag:web and tag:internal
user1Node := &types.Node{
ID: 1,
Hostname: "user1-node",
IPv4: ap("100.64.0.1"),
IPv6: ap("fd7a:115c:a1e0::1"),
User: ptr.To(users[0]),
UserID: ptr.To(users[0].ID),
Tags: []string{"tag:web", "tag:internal"},
}
// user2's node (no tags)
user2Node := &types.Node{
ID: 2,
Hostname: "user2-node",
IPv4: ap("100.64.0.2"),
IPv6: ap("fd7a:115c:a1e0::2"),
User: ptr.To(users[1]),
UserID: ptr.To(users[1].ID),
}
initialNodes := types.Nodes{user1Node, user2Node}
pm, err := NewPolicyManager([]byte(policy), users, initialNodes.ViewSlice())
require.NoError(t, err)
// Initial state: user2 should see user1 as a peer (user1 has tag:web)
initialPeerMap := pm.BuildPeerMap(initialNodes.ViewSlice())
// Check user2's peers - should include user1
user2Peers := initialPeerMap[user2Node.ID]
require.Len(t, user2Peers, 1, "user2 should have 1 peer initially (user1 with tag:web)")
require.Equal(t, user1Node.ID, user2Peers[0].ID(), "user2's peer should be user1")
// Check user1's peers - should include user2 (bidirectional ACL)
user1Peers := initialPeerMap[user1Node.ID]
require.Len(t, user1Peers, 1, "user1 should have 1 peer initially (user2)")
require.Equal(t, user2Node.ID, user1Peers[0].ID(), "user1's peer should be user2")
// Now change user1's tags: remove tag:web, keep only tag:internal
user1NodeUpdated := &types.Node{
ID: 1,
Hostname: "user1-node",
IPv4: ap("100.64.0.1"),
IPv6: ap("fd7a:115c:a1e0::1"),
User: ptr.To(users[0]),
UserID: ptr.To(users[0].ID),
Tags: []string{"tag:internal"}, // tag:web removed!
}
updatedNodes := types.Nodes{user1NodeUpdated, user2Node}
// SetNodes should detect the tag change
changed, err := pm.SetNodes(updatedNodes.ViewSlice())
require.NoError(t, err)
require.True(t, changed, "SetNodes should return true when tags change")
// After tag change: user2 should NOT see user1 as a peer anymore
// (no ACL allows user2 to access tag:internal)
updatedPeerMap := pm.BuildPeerMap(updatedNodes.ViewSlice())
// Check user2's peers - should be empty now
user2PeersAfter := updatedPeerMap[user2Node.ID]
require.Empty(t, user2PeersAfter, "user2 should have no peers after tag:web is removed from user1")
// Check user1's peers - should also be empty
user1PeersAfter := updatedPeerMap[user1Node.ID]
require.Empty(t, user1PeersAfter, "user1 should have no peers after tag:web is removed")
// Also verify MatchersForNode returns non-empty matchers and ReduceNodes filters correctly
// This simulates what buildTailPeers does in the mapper
matchersForUser2, err := pm.MatchersForNode(user2Node.View())
require.NoError(t, err)
require.NotEmpty(t, matchersForUser2, "MatchersForNode should return non-empty matchers (at least self-access rule)")
// Test ReduceNodes logic with the updated nodes and matchers
// This is what buildTailPeers does - it takes peers from ListPeers (which might include user1)
// and filters them using ReduceNodes with the updated matchers
// Inline the ReduceNodes logic to avoid import cycle
user2View := user2Node.View()
user1UpdatedView := user1NodeUpdated.View()
// Check if user2 can access user1 OR user1 can access user2
canAccess := user2View.CanAccess(matchersForUser2, user1UpdatedView) ||
user1UpdatedView.CanAccess(matchersForUser2, user2View)
require.False(t, canAccess, "user2 should NOT be able to access user1 after tag:web is removed (ReduceNodes should filter out)")
}
// TestAutogroupSelfWithAdminOverride reproduces issue #2990:
// When autogroup:self is combined with an admin rule (group:admin -> *:*),
// tagged nodes become invisible to admins because BuildPeerMap uses asymmetric
// peer visibility in the autogroup:self path.
//
// The fix requires symmetric visibility: if admin can access tagged node,
// BOTH admin and tagged node should see each other as peers.
func TestAutogroupSelfWithAdminOverride(t *testing.T) {
users := types.Users{
{Model: gorm.Model{ID: 1}, Name: "admin", Email: "admin@example.com"},
{Model: gorm.Model{ID: 2}, Name: "user1", Email: "user1@example.com"},
}
// Admin has a regular device
adminNode := &types.Node{
ID: 1,
Hostname: "admin-device",
IPv4: ap("100.64.0.1"),
IPv6: ap("fd7a:115c:a1e0::1"),
User: ptr.To(users[0]),
UserID: ptr.To(users[0].ID),
Hostinfo: &tailcfg.Hostinfo{},
}
// user1 has a tagged server
user1TaggedNode := &types.Node{
ID: 2,
Hostname: "user1-server",
IPv4: ap("100.64.0.2"),
IPv6: ap("fd7a:115c:a1e0::2"),
User: ptr.To(users[1]),
UserID: ptr.To(users[1].ID),
Tags: []string{"tag:server"},
Hostinfo: &tailcfg.Hostinfo{},
}
nodes := types.Nodes{adminNode, user1TaggedNode}
// Policy from issue #2990:
// - group:admin has full access to everything (*:*)
// - autogroup:member -> autogroup:self (allows users to see their own devices)
//
// Bug: The tagged server becomes invisible to admin because:
// 1. Admin can access tagged server (via *:* rule)
// 2. Tagged server CANNOT access admin (no rule for that)
// 3. With asymmetric logic, tagged server is not added to admin's peer list
policy := `{
"groups": {
"group:admin": ["admin@example.com"]
},
"tagOwners": {
"tag:server": ["user1@example.com"]
},
"acls": [
{
"action": "accept",
"src": ["group:admin"],
"dst": ["*:*"]
},
{
"action": "accept",
"src": ["autogroup:member"],
"dst": ["autogroup:self:*"]
}
]
}`
pm, err := NewPolicyManager([]byte(policy), users, nodes.ViewSlice())
require.NoError(t, err)
peerMap := pm.BuildPeerMap(nodes.ViewSlice())
// Admin should see the tagged server as a peer (via group:admin -> *:* rule)
adminPeers := peerMap[adminNode.ID]
require.True(t, slices.ContainsFunc(adminPeers, func(n types.NodeView) bool {
return n.ID() == user1TaggedNode.ID
}), "admin should see tagged server as peer via *:* rule (issue #2990)")
// Tagged server should also see admin as a peer (symmetric visibility)
// Even though tagged server cannot ACCESS admin, it should still SEE admin
// because admin CAN access it. This is required for proper network operation.
taggedPeers := peerMap[user1TaggedNode.ID]
require.True(t, slices.ContainsFunc(taggedPeers, func(n types.NodeView) bool {
return n.ID() == adminNode.ID
}), "tagged server should see admin as peer (symmetric visibility)")
}
// TestAutogroupSelfSymmetricVisibility verifies that peer visibility is symmetric:
// if node A can access node B, then both A and B should see each other as peers.
// This is the same behavior as the global filter path.
func TestAutogroupSelfSymmetricVisibility(t *testing.T) {
users := types.Users{
{Model: gorm.Model{ID: 1}, Name: "user1", Email: "user1@example.com"},
{Model: gorm.Model{ID: 2}, Name: "user2", Email: "user2@example.com"},
}
// user1 has device A
deviceA := &types.Node{
ID: 1,
Hostname: "device-a",
IPv4: ap("100.64.0.1"),
IPv6: ap("fd7a:115c:a1e0::1"),
User: ptr.To(users[0]),
UserID: ptr.To(users[0].ID),
Hostinfo: &tailcfg.Hostinfo{},
}
// user2 has device B (tagged)
deviceB := &types.Node{
ID: 2,
Hostname: "device-b",
IPv4: ap("100.64.0.2"),
IPv6: ap("fd7a:115c:a1e0::2"),
User: ptr.To(users[1]),
UserID: ptr.To(users[1].ID),
Tags: []string{"tag:web"},
Hostinfo: &tailcfg.Hostinfo{},
}
nodes := types.Nodes{deviceA, deviceB}
// One-way rule: user1 can access tag:web, but tag:web cannot access user1
policy := `{
"tagOwners": {
"tag:web": ["user2@example.com"]
},
"acls": [
{
"action": "accept",
"src": ["user1@example.com"],
"dst": ["tag:web:*"]
},
{
"action": "accept",
"src": ["autogroup:member"],
"dst": ["autogroup:self:*"]
}
]
}`
pm, err := NewPolicyManager([]byte(policy), users, nodes.ViewSlice())
require.NoError(t, err)
peerMap := pm.BuildPeerMap(nodes.ViewSlice())
// Device A (user1) should see device B (tag:web) as peer
aPeers := peerMap[deviceA.ID]
require.True(t, slices.ContainsFunc(aPeers, func(n types.NodeView) bool {
return n.ID() == deviceB.ID
}), "device A should see device B as peer (user1 -> tag:web rule)")
// Device B (tag:web) should ALSO see device A as peer (symmetric visibility)
// Even though B cannot ACCESS A, B should still SEE A as a peer
bPeers := peerMap[deviceB.ID]
require.True(t, slices.ContainsFunc(bPeers, func(n types.NodeView) bool {
return n.ID() == deviceA.ID
}), "device B should see device A as peer (symmetric visibility)")
}