criu/criu/cr-dump.c
David Francis d43217dadb plugin: Add DUMP_DEVICES_LATE callback
The amdgpu plugin was counting how many files were checkpointed
to determine when it should close the device files.

The number of device files is not consistent; a process may
have multiple copies of the drm device files open.

Instead of doing this counting, add a new callback after all
files are checkpointed, so plugins can clean up their
resources at an appropriate time.

Signed-off-by: David Francis <David.Francis@amd.com>
2025-11-14 18:31:37 +00:00

2339 lines
52 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <signal.h>
#include <limits.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/vfs.h>
#include <sys/time.h>
#include <sys/wait.h>
#include <sched.h>
#include <sys/resource.h>
#include "types.h"
#include "protobuf.h"
#include "images/fdinfo.pb-c.h"
#include "images/fs.pb-c.h"
#include "images/mm.pb-c.h"
#include "images/creds.pb-c.h"
#include "images/core.pb-c.h"
#include "images/file-lock.pb-c.h"
#include "images/rlimit.pb-c.h"
#include "images/siginfo.pb-c.h"
#include "common/list.h"
#include "imgset.h"
#include "file-ids.h"
#include "kcmp-ids.h"
#include "common/compiler.h"
#include "crtools.h"
#include "cr_options.h"
#include "servicefd.h"
#include "string.h"
#include "ptrace-compat.h"
#include "util.h"
#include "namespaces.h"
#include "image.h"
#include "proc_parse.h"
#include "parasite.h"
#include "parasite-syscall.h"
#include "compel/ptrace.h"
#include "files.h"
#include "files-reg.h"
#include "shmem.h"
#include "sk-inet.h"
#include "pstree.h"
#include "mount.h"
#include "tty.h"
#include "net.h"
#include "sk-packet.h"
#include "cpu.h"
#include "elf.h"
#include "cgroup.h"
#include "cgroup-props.h"
#include "file-lock.h"
#include "page-xfer.h"
#include "kerndat.h"
#include "stats.h"
#include "mem.h"
#include "page-pipe.h"
#include "posix-timer.h"
#include "vdso.h"
#include "vma.h"
#include "cr-service.h"
#include "plugin.h"
#include "irmap.h"
#include "sysfs_parse.h"
#include "action-scripts.h"
#include "aio.h"
#include "lsm.h"
#include "seccomp.h"
#include "seize.h"
#include "fault-injection.h"
#include "dump.h"
#include "eventpoll.h"
#include "memfd.h"
#include "timens.h"
#include "img-streamer.h"
#include "pidfd-store.h"
#include "apparmor.h"
#include "asm/dump.h"
#include "timer.h"
#include "sigact.h"
/*
* Architectures can overwrite this function to restore register sets that
* are not covered by ptrace_set/get_regs().
*
* with_threads = false: Only the register sets of the tasks are restored
* with_threads = true : The register sets of the tasks with all their threads
* are restored
*/
int __attribute__((weak)) arch_set_thread_regs(struct pstree_item *item, bool with_threads)
{
return 0;
}
#define PERSONALITY_LENGTH 9
static char loc_buf[PERSONALITY_LENGTH];
void free_mappings(struct vm_area_list *vma_area_list)
{
struct vma_area *vma_area, *p;
list_for_each_entry_safe(vma_area, p, &vma_area_list->h, list) {
if (!vma_area->file_borrowed)
free(vma_area->vmst);
free(vma_area);
}
vm_area_list_init(vma_area_list);
}
int collect_mappings(pid_t pid, struct vm_area_list *vma_area_list, dump_filemap_t dump_file)
{
int ret = -1;
pr_info("\n");
pr_info("Collecting mappings (pid: %d)\n", pid);
pr_info("----------------------------------------\n");
ret = parse_smaps(pid, vma_area_list, dump_file);
if (ret < 0)
goto err;
/*
* In addition to real process VMAs we should keep an info about
* madvise(MADV_GUARD_INSTALL) pages. While these are not represented
* as a struct vm_area_struct in the kernel, it is convenient to treat
* them as mappings in CRIU and reuse the same VMA images but with only
* VMA_AREA_GUARD flag set.
*
* Also, we don't need to dump them during pre-dump.
*/
if (dump_file) {
ret = collect_madv_guards(pid, vma_area_list);
if (ret < 0) {
pr_err("Collect MADV_GUARD_INSTALL pages (pid: %d) failed with %d\n", pid, ret);
goto err;
}
}
pr_info("Collected, longest area occupies %lu pages\n", vma_area_list->nr_priv_pages_longest);
pr_info_vma_list(&vma_area_list->h);
pr_info("----------------------------------------\n");
err:
return ret;
}
static int dump_sched_info(int pid, ThreadCoreEntry *tc)
{
int ret;
struct sched_param sp;
BUILD_BUG_ON(SCHED_OTHER != 0); /* default in proto message */
/*
* In musl-libc sched_getscheduler and sched_getparam don't call
* syscalls and instead the always return -ENOSYS
*/
ret = syscall(__NR_sched_getscheduler, pid);
if (ret < 0) {
pr_perror("Can't get sched policy for %d", pid);
return -1;
}
pr_info("%d has %d sched policy\n", pid, ret);
tc->has_sched_policy = true;
tc->sched_policy = ret;
/* The reset-on-fork flag might be used in combination
* with SCHED_FIFO or SCHED_RR to reset the scheduling
* policy/priority in child processes.
*/
ret &= ~SCHED_RESET_ON_FORK;
if ((ret == SCHED_RR) || (ret == SCHED_FIFO)) {
ret = syscall(__NR_sched_getparam, pid, &sp);
if (ret < 0) {
pr_perror("Can't get sched param for %d", pid);
return -1;
}
pr_info("\tdumping %d prio for %d\n", sp.sched_priority, pid);
tc->has_sched_prio = true;
tc->sched_prio = sp.sched_priority;
}
/*
* The nice is ignored for RT sched policies, but is stored
* in kernel. Thus we have to take it with us in the image.
*/
errno = 0;
ret = getpriority(PRIO_PROCESS, pid);
if (ret == -1 && errno) {
pr_perror("Can't get nice for %d ret %d", pid, ret);
return -1;
}
pr_info("\tdumping %d nice for %d\n", ret, pid);
tc->has_sched_nice = true;
tc->sched_nice = ret;
return 0;
}
static int check_thread_rseq(pid_t tid, const struct parasite_check_rseq *ti_rseq)
{
if (!kdat.has_rseq || kdat.has_ptrace_get_rseq_conf)
return 0;
pr_debug("%d has rseq_inited = %d\n", tid, ti_rseq->rseq_inited);
/*
* We have no kdat.has_ptrace_get_rseq_conf and user
* process has rseq() used, let's fail dump.
*/
if (ti_rseq->rseq_inited) {
pr_err("%d has rseq but kernel lacks get_rseq_conf feature\n", tid);
return -1;
}
return 0;
}
struct cr_imgset *glob_imgset;
static int collect_fds(pid_t pid, struct parasite_drain_fd **dfds)
{
struct dirent *de;
DIR *fd_dir;
int size = 0;
int n;
pr_info("\n");
pr_info("Collecting fds (pid: %d)\n", pid);
pr_info("----------------------------------------\n");
fd_dir = opendir_proc(pid, "fd");
if (!fd_dir)
return -1;
n = 0;
while ((de = readdir(fd_dir))) {
if (dir_dots(de))
continue;
if (sizeof(struct parasite_drain_fd) + sizeof(int) * (n + 1) > size) {
struct parasite_drain_fd *t;
size += PAGE_SIZE;
t = xrealloc(*dfds, size);
if (!t) {
closedir(fd_dir);
return -1;
}
*dfds = t;
}
(*dfds)->fds[n++] = atoi(de->d_name);
}
(*dfds)->nr_fds = n;
pr_info("Found %d file descriptors\n", n);
pr_info("----------------------------------------\n");
closedir(fd_dir);
return 0;
}
static int fill_fd_params_special(int fd, struct fd_parms *p)
{
*p = FD_PARMS_INIT;
if (fstat(fd, &p->stat) < 0) {
pr_perror("Can't fstat exe link");
return -1;
}
if (get_fd_mntid(fd, &p->mnt_id))
return -1;
return 0;
}
static long get_fs_type(int lfd)
{
struct statfs fst;
if (fstatfs(lfd, &fst)) {
pr_perror("Unable to statfs fd %d", lfd);
return -1;
}
return fst.f_type;
}
static int dump_one_reg_file_cond(int lfd, u32 *id, struct fd_parms *parms)
{
if (fd_id_generate_special(parms, id)) {
parms->fs_type = get_fs_type(lfd);
if (parms->fs_type < 0)
return -1;
return dump_one_reg_file(lfd, *id, parms);
}
return 0;
}
static int dump_task_exe_link(pid_t pid, MmEntry *mm)
{
struct fd_parms params;
int fd, ret = 0;
fd = open_proc_path(pid, "exe");
if (fd < 0)
return -1;
if (fill_fd_params_special(fd, &params))
return -1;
ret = dump_one_reg_file_cond(fd, &mm->exe_file_id, &params);
close(fd);
return ret;
}
static int dump_task_fs(pid_t pid, struct parasite_dump_misc *misc, struct cr_imgset *imgset)
{
struct fd_parms p;
FsEntry fe = FS_ENTRY__INIT;
int fd, ret;
fe.has_umask = true;
fe.umask = misc->umask;
fd = open_proc_path(pid, "cwd");
if (fd < 0)
return -1;
if (fill_fd_params_special(fd, &p))
return -1;
ret = dump_one_reg_file_cond(fd, &fe.cwd_id, &p);
if (ret < 0)
return ret;
close(fd);
fd = open_proc_path(pid, "root");
if (fd < 0)
return -1;
if (fill_fd_params_special(fd, &p))
return -1;
ret = dump_one_reg_file_cond(fd, &fe.root_id, &p);
if (ret < 0)
return ret;
close(fd);
pr_info("Dumping task cwd id %#x root id %#x\n", fe.cwd_id, fe.root_id);
return pb_write_one(img_from_set(imgset, CR_FD_FS), &fe, PB_FS);
}
static inline rlim_t encode_rlim(rlim_t val)
{
return val == RLIM_INFINITY ? -1 : val;
}
static int dump_task_rlimits(int pid, TaskRlimitsEntry *rls)
{
int res;
for (res = 0; res < rls->n_rlimits; res++) {
struct rlimit64 lim;
if (syscall(__NR_prlimit64, pid, res, NULL, &lim)) {
pr_perror("Can't get rlimit %d", res);
return -1;
}
rls->rlimits[res]->cur = encode_rlim(lim.rlim_cur);
rls->rlimits[res]->max = encode_rlim(lim.rlim_max);
}
return 0;
}
static int dump_pid_misc(pid_t pid, TaskCoreEntry *tc)
{
int ret;
if (kdat.luid != LUID_NONE) {
pr_info("dumping /proc/%d/loginuid\n", pid);
tc->has_loginuid = true;
tc->loginuid = parse_pid_loginuid(pid, &ret, false);
tc->loginuid = userns_uid(tc->loginuid);
/*
* loginuid dumping is critical, as if not correctly
* restored, you may loss ability to login via SSH to CT
*/
if (ret < 0)
return ret;
} else {
tc->has_loginuid = false;
}
pr_info("dumping /proc/%d/oom_score_adj\n", pid);
tc->oom_score_adj = parse_pid_oom_score_adj(pid, &ret);
/*
* oom_score_adj dumping is not very critical, as it will affect
* on victim in OOM situation and one will find dumping error in log
*/
if (ret < 0)
tc->has_oom_score_adj = false;
else
tc->has_oom_score_adj = true;
return 0;
}
static int dump_filemap(struct vma_area *vma_area, int fd)
{
struct fd_parms p = FD_PARMS_INIT;
VmaEntry *vma = vma_area->e;
int ret = 0;
u32 id;
BUG_ON(!vma_area->vmst);
p.stat = *vma_area->vmst;
p.mnt_id = vma_area->mnt_id;
/*
* AUFS support to compensate for the kernel bug
* exposing branch pathnames in map_files.
*
* If the link found in vma_get_mapfile() pointed
* inside a branch, we should use the pathname
* from root that was saved in vma_area->aufs_rpath.
*/
if (vma_area->aufs_rpath) {
struct fd_link aufs_link;
__strlcpy(aufs_link.name, vma_area->aufs_rpath, sizeof(aufs_link.name));
aufs_link.len = strlen(aufs_link.name);
p.link = &aufs_link;
}
/* Flags will be set during restore in open_filmap() */
if (vma->status & VMA_AREA_MEMFD)
ret = dump_one_memfd_cond(fd, &id, &p);
else
ret = dump_one_reg_file_cond(fd, &id, &p);
vma->shmid = id;
return ret;
}
static int check_sysvipc_map_dump(pid_t pid, VmaEntry *vma)
{
if (root_ns_mask & CLONE_NEWIPC)
return 0;
pr_err("Task %d with SysVIPC shmem map @%" PRIx64 " doesn't live in IPC ns\n", pid, vma->start);
return -1;
}
static int get_task_auxv(pid_t pid, MmEntry *mm)
{
auxv_t mm_saved_auxv[AT_VECTOR_SIZE];
int fd, i, ret;
pr_info("Obtaining task auvx ...\n");
fd = open_proc(pid, "auxv");
if (fd < 0)
return -1;
ret = read(fd, mm_saved_auxv, sizeof(mm_saved_auxv));
if (ret < 0) {
ret = -1;
pr_perror("Error reading %d's auxv", pid);
goto err;
} else {
mm->n_mm_saved_auxv = ret / sizeof(auxv_t);
for (i = 0; i < mm->n_mm_saved_auxv; i++)
mm->mm_saved_auxv[i] = (u64)mm_saved_auxv[i];
}
ret = 0;
err:
close_safe(&fd);
return ret;
}
static int dump_task_mm(pid_t pid, const struct proc_pid_stat *stat, const struct parasite_dump_misc *misc,
const struct vm_area_list *vma_area_list, const struct cr_imgset *imgset)
{
MmEntry mme = MM_ENTRY__INIT;
struct vma_area *vma_area;
int ret = -1, i = 0;
pr_info("\n");
pr_info("Dumping mm (pid: %d)\n", pid);
pr_info("----------------------------------------\n");
mme.n_vmas = vma_area_list->nr;
mme.vmas = xmalloc(mme.n_vmas * sizeof(VmaEntry *));
if (!mme.vmas)
return -1;
list_for_each_entry(vma_area, &vma_area_list->h, list) {
VmaEntry *vma = vma_area->e;
pr_info_vma(vma_area);
if (!vma_entry_is(vma, VMA_AREA_REGULAR))
ret = 0;
else if (vma_entry_is(vma, VMA_AREA_SYSVIPC))
ret = check_sysvipc_map_dump(pid, vma);
else if (vma_entry_is(vma, VMA_AREA_SOCKET))
ret = dump_socket_map(vma_area);
else
ret = 0;
if (ret)
goto err;
mme.vmas[i++] = vma;
if (vma_entry_is(vma, VMA_AREA_AIORING)) {
ret = dump_aio_ring(&mme, vma_area);
if (ret)
goto err;
}
}
mme.mm_start_code = stat->start_code;
mme.mm_end_code = stat->end_code;
mme.mm_start_data = stat->start_data;
mme.mm_end_data = stat->end_data;
mme.mm_start_stack = stat->start_stack;
mme.mm_start_brk = stat->start_brk;
mme.mm_arg_start = stat->arg_start;
mme.mm_arg_end = stat->arg_end;
mme.mm_env_start = stat->env_start;
mme.mm_env_end = stat->env_end;
mme.mm_brk = misc->brk;
mme.dumpable = misc->dumpable;
mme.has_dumpable = true;
mme.thp_disabled = misc->thp_disabled;
mme.has_thp_disabled = true;
mme.n_mm_saved_auxv = AT_VECTOR_SIZE;
mme.mm_saved_auxv = xmalloc(pb_repeated_size(&mme, mm_saved_auxv));
if (!mme.mm_saved_auxv)
goto err;
if (get_task_auxv(pid, &mme))
goto err;
if (dump_task_exe_link(pid, &mme))
goto err;
ret = pb_write_one(img_from_set(imgset, CR_FD_MM), &mme, PB_MM);
xfree(mme.mm_saved_auxv);
free_aios(&mme);
err:
xfree(mme.vmas);
return ret;
}
static int get_task_futex_robust_list(pid_t pid, ThreadCoreEntry *info)
{
struct robust_list_head *head = NULL;
size_t len = 0;
int ret;
ret = syscall(SYS_get_robust_list, pid, &head, &len);
if (ret < 0 && errno == ENOSYS) {
/*
* If the kernel says get_robust_list is not implemented, then
* check whether set_robust_list is also not implemented, in
* that case we can assume it is empty, since set_robust_list
* is the only way to populate it. This case is possible when
* "futex_cmpxchg_enabled" is unset in the kernel.
*
* The following system call should always fail, even if it is
* implemented, in which case it will return -EINVAL because
* len should be greater than zero.
*/
ret = syscall(SYS_set_robust_list, NULL, 0);
if (ret == 0 || (ret < 0 && errno != ENOSYS))
goto err;
head = NULL;
len = 0;
} else if (ret) {
goto err;
}
info->futex_rla = encode_pointer(head);
info->futex_rla_len = (u32)len;
return 0;
err:
pr_err("Failed obtaining futex robust list on %d\n", pid);
return -1;
}
static int get_task_personality(pid_t pid, u32 *personality)
{
int fd, ret = -1;
pr_info("Obtaining personality ... \n");
fd = open_proc(pid, "personality");
if (fd < 0)
goto err;
ret = read(fd, loc_buf, sizeof(loc_buf) - 1);
close(fd);
if (ret >= 0) {
loc_buf[ret] = '\0';
*personality = atoi(loc_buf);
}
err:
return ret;
}
static DECLARE_KCMP_TREE(vm_tree, KCMP_VM);
static DECLARE_KCMP_TREE(fs_tree, KCMP_FS);
static DECLARE_KCMP_TREE(files_tree, KCMP_FILES);
static DECLARE_KCMP_TREE(sighand_tree, KCMP_SIGHAND);
static int dump_task_kobj_ids(struct pstree_item *item)
{
int new;
struct kid_elem elem;
int pid = item->pid->real;
TaskKobjIdsEntry *ids = item->ids;
elem.pid = pid;
elem.idx = 0; /* really 0 for all */
elem.genid = 0; /* FIXME optimize */
new = 0;
ids->vm_id = kid_generate_gen(&vm_tree, &elem, &new);
if (!ids->vm_id || !new) {
pr_err("Can't make VM id for %d\n", pid);
return -1;
}
new = 0;
ids->fs_id = kid_generate_gen(&fs_tree, &elem, &new);
if (!ids->fs_id || !new) {
pr_err("Can't make FS id for %d\n", pid);
return -1;
}
new = 0;
ids->files_id = kid_generate_gen(&files_tree, &elem, &new);
if (!ids->files_id || (!new && !shared_fdtable(item))) {
pr_err("Can't make FILES id for %d\n", pid);
return -1;
}
new = 0;
ids->sighand_id = kid_generate_gen(&sighand_tree, &elem, &new);
if (!ids->sighand_id || !new) {
pr_err("Can't make IO id for %d\n", pid);
return -1;
}
return 0;
}
int get_task_ids(struct pstree_item *item)
{
int ret;
item->ids = xmalloc(sizeof(*item->ids));
if (!item->ids)
goto err;
task_kobj_ids_entry__init(item->ids);
if (item->pid->state != TASK_DEAD) {
ret = dump_task_kobj_ids(item);
if (ret)
goto err_free;
ret = dump_task_ns_ids(item);
if (ret)
goto err_free;
}
return 0;
err_free:
xfree(item->ids);
item->ids = NULL;
err:
return -1;
}
static int dump_task_ids(struct pstree_item *item, const struct cr_imgset *cr_imgset)
{
return pb_write_one(img_from_set(cr_imgset, CR_FD_IDS), item->ids, PB_IDS);
}
int dump_thread_core(int pid, CoreEntry *core, const struct parasite_dump_thread *ti)
{
int ret;
ThreadCoreEntry *tc = core->thread_core;
/*
* XXX: It's possible to set two: 32-bit and 64-bit
* futex list's heads. That makes about no sense, but
* it's possible. Until we meet such application, dump
* only one: native or compat futex's list pointer.
*/
if (!core_is_compat(core))
ret = get_task_futex_robust_list(pid, tc);
else
ret = get_task_futex_robust_list_compat(pid, tc);
if (!ret)
ret = dump_sched_info(pid, tc);
if (!ret) {
core_put_tls(core, ti->tls);
CORE_THREAD_ARCH_INFO(core)->clear_tid_addr = encode_pointer(ti->tid_addr);
BUG_ON(!tc->sas);
copy_sas(tc->sas, &ti->sas);
if (ti->pdeath_sig) {
tc->has_pdeath_sig = true;
tc->pdeath_sig = ti->pdeath_sig;
}
tc->comm = xstrdup(ti->comm);
if (tc->comm == NULL)
return -1;
}
if (!ret)
ret = seccomp_dump_thread(pid, tc);
/*
* We are dumping rseq() in the dump_thread_rseq() function,
* *before* processes gets infected (because of ptrace requests
* API restriction). At this point, if the kernel lacks
* kdat.has_ptrace_get_rseq_conf support we have to ensure
* that dumpable processes haven't initialized rseq() or
* fail dump if rseq() was used.
*/
if (!ret)
ret = check_thread_rseq(pid, &ti->rseq);
return ret;
}
static int dump_task_core_all(struct parasite_ctl *ctl, struct pstree_item *item, const struct proc_pid_stat *stat,
const struct cr_imgset *cr_imgset, const struct parasite_dump_misc *misc)
{
struct cr_img *img;
CoreEntry *core = item->core[0];
pid_t pid = item->pid->real;
int ret = -1;
struct parasite_dump_cgroup_args cgroup_args, *info = NULL;
u32 *cg_set;
BUILD_BUG_ON(sizeof(cgroup_args) < PARASITE_ARG_SIZE_MIN);
pr_info("\n");
pr_info("Dumping core (pid: %d)\n", pid);
pr_info("----------------------------------------\n");
core->tc->child_subreaper = misc->child_subreaper;
core->tc->has_child_subreaper = true;
if (misc->membarrier_registration_mask) {
core->tc->membarrier_registration_mask = misc->membarrier_registration_mask;
core->tc->has_membarrier_registration_mask = true;
}
ret = get_task_personality(pid, &core->tc->personality);
if (ret < 0)
goto err;
__strlcpy((char *)core->tc->comm, stat->comm, TASK_COMM_LEN);
core->tc->flags = stat->flags;
core->tc->task_state = item->pid->state;
core->tc->exit_code = 0;
core->thread_core->creds->lsm_profile = dmpi(item)->thread_lsms[0]->profile;
core->thread_core->creds->lsm_sockcreate = dmpi(item)->thread_lsms[0]->sockcreate;
if (core->tc->task_state == TASK_STOPPED) {
core->tc->has_stop_signo = true;
core->tc->stop_signo = item->pid->stop_signo;
}
ret = parasite_dump_thread_leader_seized(ctl, pid, core);
if (ret)
goto err;
ret = dump_pid_misc(pid, core->tc);
if (ret)
goto err;
ret = dump_task_rlimits(pid, core->tc->rlimits);
if (ret)
goto err;
/* For now, we only need to dump the root task's cgroup ns, because we
* know all the tasks are in the same cgroup namespace because we don't
* allow nesting.
*/
if (item->ids->has_cgroup_ns_id && !item->parent) {
info = &cgroup_args;
strcpy(cgroup_args.thread_cgrp, "self/cgroup");
ret = parasite_dump_cgroup(ctl, &cgroup_args);
if (ret)
goto err;
}
core->thread_core->has_cg_set = true;
cg_set = &core->thread_core->cg_set;
ret = dump_thread_cgroup(item, cg_set, info, -1);
if (ret)
goto err;
img = img_from_set(cr_imgset, CR_FD_CORE);
ret = pb_write_one(img, core, PB_CORE);
err:
pr_info("----------------------------------------\n");
return ret;
}
static int collect_pstree_ids_predump(void)
{
struct pstree_item *item;
struct pid pid;
struct {
struct pstree_item i;
struct dmp_info d;
} crt = {
.i.pid = &pid,
};
/*
* This thing is normally done inside
* write_img_inventory().
*/
crt.i.pid->state = TASK_ALIVE;
crt.i.pid->real = getpid();
if (predump_task_ns_ids(&crt.i))
return -1;
for_each_pstree_item(item) {
if (item->pid->state == TASK_DEAD)
continue;
if (predump_task_ns_ids(item))
return -1;
}
return 0;
}
int collect_pstree_ids(void)
{
struct pstree_item *item;
for_each_pstree_item(item)
if (get_task_ids(item))
return -1;
return 0;
}
static int collect_file_locks(void)
{
return parse_file_locks();
}
static bool task_in_rseq(struct criu_rseq_cs *rseq_cs, uint64_t addr)
{
return addr >= rseq_cs->start_ip && addr < rseq_cs->start_ip + rseq_cs->post_commit_offset;
}
static int fixup_thread_rseq(const struct pstree_item *item, int i)
{
CoreEntry *core = item->core[i];
struct criu_rseq_cs *rseq_cs = &dmpi(item)->thread_rseq_cs[i];
pid_t tid = item->threads[i].real;
if (!kdat.has_ptrace_get_rseq_conf)
return 0;
/* equivalent to (struct rseq)->rseq_cs is NULL */
if (!rseq_cs->start_ip)
return 0;
pr_debug(
"fixup_thread_rseq for %d: rseq_cs start_ip = %llx abort_ip = %llx post_commit_offset = %llx flags = %x version = %x; IP = %lx\n",
tid, rseq_cs->start_ip, rseq_cs->abort_ip, rseq_cs->post_commit_offset, rseq_cs->flags,
rseq_cs->version, (unsigned long)TI_IP(core));
if (rseq_cs->version != 0) {
pr_err("unsupported RSEQ ABI version = %d\n", rseq_cs->version);
return -1;
}
if (task_in_rseq(rseq_cs, TI_IP(core))) {
struct pid *tid = &item->threads[i];
/*
* We need to fixup task instruction pointer from
* the original one (which lays inside rseq critical section)
* to rseq abort handler address. But we need to look on rseq_cs->flags
* (please refer to struct rseq -> flags field description).
* Naive idea of flags support may be like... let's change instruction pointer (IP)
* to rseq_cs->abort_ip if !(rseq_cs->flags & RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL).
* But unfortunately, it doesn't work properly, because the kernel does
* clean up of rseq_cs field in the struct rseq (modifies userspace memory).
* So, we need to preserve original value of (struct rseq)->rseq_cs field in the
* image and restore it's value before releasing threads (see restore_rseq_cs()).
*
* It's worth to mention that we need to fixup IP in CoreEntry
* (used when full dump/restore is performed) and also in
* the parasite regs storage (used if --leave-running option is used,
* or if dump error occurred and process execution is resumed).
*/
if (!(rseq_cs->flags & RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL)) {
pr_warn("The %d task is in rseq critical section. IP will be set to rseq abort handler addr\n",
tid->real);
TI_IP(core) = rseq_cs->abort_ip;
if (item->pid->real == tid->real) {
compel_set_leader_ip(dmpi(item)->parasite_ctl, rseq_cs->abort_ip);
} else {
compel_set_thread_ip(dmpi(item)->thread_ctls[i], rseq_cs->abort_ip);
}
}
}
return 0;
}
static int dump_task_thread(struct parasite_ctl *parasite_ctl, const struct pstree_item *item, int id)
{
struct parasite_thread_ctl *tctl = dmpi(item)->thread_ctls[id];
struct pid *tid = &item->threads[id];
CoreEntry *core = item->core[id];
pid_t pid = tid->real;
int ret = -1;
struct cr_img *img;
pr_info("\n");
pr_info("Dumping core for thread (pid: %d)\n", pid);
pr_info("----------------------------------------\n");
ret = parasite_dump_thread_seized(tctl, parasite_ctl, id, tid, core);
if (ret) {
pr_err("Can't dump thread for pid %d\n", pid);
goto err;
}
pstree_insert_pid(tid);
core->thread_core->creds->lsm_profile = dmpi(item)->thread_lsms[id]->profile;
core->thread_core->creds->lsm_sockcreate = dmpi(item)->thread_lsms[0]->sockcreate;
ret = fixup_thread_rseq(item, id);
if (ret) {
pr_err("Can't fixup rseq for pid %d\n", pid);
goto err;
}
img = open_image(CR_FD_CORE, O_DUMP, tid->ns[0].virt);
if (!img)
goto err;
ret = pb_write_one(img, core, PB_CORE);
close_image(img);
err:
compel_release_thread(tctl);
pr_info("----------------------------------------\n");
return ret;
}
static int dump_one_zombie(const struct pstree_item *item, const struct proc_pid_stat *pps)
{
CoreEntry *core;
int ret = -1;
struct cr_img *img;
core = core_entry_alloc(0, 1);
if (!core)
return -1;
__strlcpy((char *)core->tc->comm, pps->comm, TASK_COMM_LEN);
core->tc->task_state = TASK_DEAD;
core->tc->exit_code = pps->exit_code;
img = open_image(CR_FD_CORE, O_DUMP, vpid(item));
if (!img)
goto err;
ret = pb_write_one(img, core, PB_CORE);
close_image(img);
err:
core_entry_free(core);
return ret;
}
#define SI_BATCH 32
static int dump_signal_queue(pid_t tid, SignalQueueEntry **sqe, bool group)
{
struct ptrace_peeksiginfo_args arg;
int ret;
SignalQueueEntry *queue = NULL;
pr_debug("Dump %s signals of %d\n", group ? "shared" : "private", tid);
arg.nr = SI_BATCH;
arg.flags = 0;
if (group)
arg.flags |= PTRACE_PEEKSIGINFO_SHARED;
arg.off = 0;
queue = xmalloc(sizeof(*queue));
if (!queue)
return -1;
signal_queue_entry__init(queue);
while (1) {
int nr, si_pos;
siginfo_t *si;
si = xmalloc(SI_BATCH * sizeof(*si));
if (!si) {
ret = -1;
break;
}
nr = ret = ptrace(PTRACE_PEEKSIGINFO, tid, &arg, si);
if (ret == 0) {
xfree(si);
break; /* Finished */
}
if (ret < 0) {
if (errno == EIO) {
pr_warn("ptrace doesn't support PTRACE_PEEKSIGINFO\n");
ret = 0;
} else
pr_perror("ptrace");
xfree(si);
break;
}
queue->n_signals += nr;
queue->signals = xrealloc(queue->signals, sizeof(*queue->signals) * queue->n_signals);
if (!queue->signals) {
ret = -1;
xfree(si);
break;
}
for (si_pos = queue->n_signals - nr; si_pos < queue->n_signals; si_pos++) {
SiginfoEntry *se;
se = xmalloc(sizeof(*se));
if (!se) {
ret = -1;
break;
}
siginfo_entry__init(se);
se->siginfo.len = sizeof(siginfo_t);
se->siginfo.data = (void *)si++; /* XXX we don't free cores, but when
* we will, this would cause problems
*/
queue->signals[si_pos] = se;
}
if (ret < 0)
break;
arg.off += nr;
}
*sqe = queue;
return ret;
}
static int dump_task_signals(pid_t pid, struct pstree_item *item)
{
int i, ret;
/* Dump private signals for each thread */
for (i = 0; i < item->nr_threads; i++) {
ret = dump_signal_queue(item->threads[i].real, &item->core[i]->thread_core->signals_p, false);
if (ret) {
pr_err("Can't dump private signals for thread %d\n", item->threads[i].real);
return -1;
}
}
/* Dump shared signals */
ret = dump_signal_queue(pid, &item->core[0]->tc->signals_s, true);
if (ret) {
pr_err("Can't dump shared signals (pid: %d)\n", pid);
return -1;
}
return 0;
}
static int read_rseq_cs(pid_t tid, struct __ptrace_rseq_configuration *rseqc, struct criu_rseq_cs *rseq_cs,
struct criu_rseq *rseq)
{
int ret;
/* rseq is not registered */
if (!rseqc->rseq_abi_pointer)
return 0;
/*
* We need to cover the case when victim process was inside rseq critical section
* at the moment when CRIU comes and seized it. We need to determine the borders
* of rseq critical section at first. To achieve that we need to access thread
* memory and read pointer to struct rseq_cs.
*
* We have two ways to access thread memory: from the parasite and using ptrace().
* But it this case we can't use parasite, because if victim process returns to the
* execution, on the kernel side __rseq_handle_notify_resume hook will be called,
* then rseq_ip_fixup() -> clear_rseq_cs() and user space memory with struct rseq
* will be cleared. So, let's use ptrace(PTRACE_PEEKDATA).
*/
ret = ptrace_peek_area(tid, rseq, decode_pointer(rseqc->rseq_abi_pointer), sizeof(struct criu_rseq));
if (ret) {
pr_err("ptrace_peek_area(%d, %lx, %lx, %lx): fail to read rseq struct\n", tid, (unsigned long)rseq,
(unsigned long)(rseqc->rseq_abi_pointer), (unsigned long)sizeof(uint64_t));
return -1;
}
if (!rseq->rseq_cs)
return 0;
ret = ptrace_peek_area(tid, rseq_cs, decode_pointer(rseq->rseq_cs), sizeof(struct criu_rseq_cs));
if (ret) {
pr_err("ptrace_peek_area(%d, %lx, %lx, %lx): fail to read rseq_cs struct\n", tid,
(unsigned long)rseq_cs, (unsigned long)rseq->rseq_cs,
(unsigned long)sizeof(struct criu_rseq_cs));
return -1;
}
return 0;
}
static int dump_thread_rseq(struct pstree_item *item, int i)
{
struct __ptrace_rseq_configuration rseqc;
RseqEntry *rseqe = NULL;
int ret;
CoreEntry *core = item->core[i];
RseqEntry **rseqep = &core->thread_core->rseq_entry;
struct criu_rseq rseq = {};
struct criu_rseq_cs *rseq_cs = &dmpi(item)->thread_rseq_cs[i];
pid_t tid = item->threads[i].real;
/*
* If we are here it means that rseq() syscall is supported,
* but ptrace(PTRACE_GET_RSEQ_CONFIGURATION) isn't supported,
* we can just fail dump here. But this is bad idea, IMHO.
*
* So, we will try to detect if victim process was used rseq().
* See check_rseq() and check_thread_rseq() functions.
*/
if (!kdat.has_ptrace_get_rseq_conf)
return 0;
ret = ptrace(PTRACE_GET_RSEQ_CONFIGURATION, tid, sizeof(rseqc), &rseqc);
if (ret != sizeof(rseqc)) {
pr_perror("ptrace(PTRACE_GET_RSEQ_CONFIGURATION, %d) = %d", tid, ret);
return -1;
}
if (rseqc.flags != 0) {
pr_err("something wrong with ptrace(PTRACE_GET_RSEQ_CONFIGURATION, %d) flags = 0x%x\n", tid,
rseqc.flags);
return -1;
}
pr_info("Dump rseq of %d: ptr = 0x%lx sign = 0x%x\n", tid, (unsigned long)rseqc.rseq_abi_pointer,
rseqc.signature);
rseqe = xmalloc(sizeof(*rseqe));
if (!rseqe)
return -1;
rseq_entry__init(rseqe);
rseqe->rseq_abi_pointer = rseqc.rseq_abi_pointer;
rseqe->rseq_abi_size = rseqc.rseq_abi_size;
rseqe->signature = rseqc.signature;
if (read_rseq_cs(tid, &rseqc, rseq_cs, &rseq))
goto err;
/* we won't save rseq_cs to the image (only pointer),
* so let's combine flags from both struct rseq and struct rseq_cs
* (kernel does the same when interpreting RSEQ_CS_FLAG_*)
*/
rseq_cs->flags |= rseq.flags;
if (rseq_cs->flags & RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL) {
rseqe->has_rseq_cs_pointer = true;
rseqe->rseq_cs_pointer = rseq.rseq_cs;
}
/* save rseq entry to the image */
*rseqep = rseqe;
return 0;
err:
xfree(rseqe);
return -1;
}
static int dump_task_rseq(pid_t pid, struct pstree_item *item)
{
int i;
struct criu_rseq_cs *thread_rseq_cs;
/* if rseq() syscall isn't supported then nothing to dump */
if (!kdat.has_rseq)
return 0;
thread_rseq_cs = xzalloc(sizeof(*thread_rseq_cs) * item->nr_threads);
if (!thread_rseq_cs)
return -1;
dmpi(item)->thread_rseq_cs = thread_rseq_cs;
for (i = 0; i < item->nr_threads; i++) {
if (dump_thread_rseq(item, i))
goto free_rseq;
}
return 0;
free_rseq:
xfree(thread_rseq_cs);
dmpi(item)->thread_rseq_cs = NULL;
return -1;
}
static struct proc_pid_stat pps_buf;
static int dump_task_threads(struct parasite_ctl *parasite_ctl, const struct pstree_item *item)
{
int i, ret = 0;
for (i = 0; i < item->nr_threads; i++) {
/* Leader is already dumped */
if (item->pid->real == item->threads[i].real) {
item->threads[i].ns[0].virt = vpid(item);
continue;
}
ret = dump_task_thread(parasite_ctl, item, i);
if (ret)
break;
}
xfree(dmpi(item)->thread_rseq_cs);
dmpi(item)->thread_rseq_cs = NULL;
return ret;
}
/*
* What this routine does is just reads pid-s of dead
* tasks in item's children list from item's ns proc.
*
* It does *not* find which real pid corresponds to
* which virtual one, but it's not required -- all we
* need to dump for zombie can be found in the same
* ns proc.
*/
static int fill_zombies_pids(struct pstree_item *item)
{
struct pstree_item *child;
int i, nr;
pid_t *ch;
/*
* Pids read here are virtual -- caller has set up
* the proc of target pid namespace.
*/
if (parse_children(vpid(item), &ch, &nr) < 0)
return -1;
/*
* Step 1 -- filter our ch's pid of alive tasks
*/
list_for_each_entry(child, &item->children, sibling) {
if (vpid(child) < 0)
continue;
for (i = 0; i < nr; i++) {
if (ch[i] == vpid(child)) {
ch[i] = -1;
break;
}
}
}
/*
* Step 2 -- assign remaining pids from ch on
* children's items in arbitrary order. The caller
* will then re-read everything needed to dump
* zombies using newly obtained virtual pids.
*/
i = 0;
list_for_each_entry(child, &item->children, sibling) {
if (vpid(child) > 0)
continue;
for (; i < nr; i++) {
if (ch[i] < 0)
continue;
child->pid->ns[0].virt = ch[i];
ch[i] = -1;
break;
}
BUG_ON(i == nr);
}
xfree(ch);
return 0;
}
static int dump_zombies(void)
{
struct pstree_item *item;
int ret = -1;
int pidns = root_ns_mask & CLONE_NEWPID;
if (pidns) {
int fd;
fd = get_service_fd(CR_PROC_FD_OFF);
if (fd < 0)
return -1;
if (set_proc_fd(fd))
return -1;
}
/*
* We dump zombies separately because for pid-ns case
* we'd have to resolve their pids w/o parasite via
* target ns' proc.
*/
for_each_pstree_item(item) {
if (item->pid->state != TASK_DEAD)
continue;
if (vpid(item) < 0) {
if (!pidns)
item->pid->ns[0].virt = item->pid->real;
else if (root_item == item) {
pr_err("A root task is dead\n");
goto err;
} else if (fill_zombies_pids(item->parent))
goto err;
}
pr_info("Obtaining zombie stat ... \n");
if (parse_pid_stat(vpid(item), &pps_buf) < 0)
goto err;
item->sid = pps_buf.sid;
item->pgid = pps_buf.pgid;
BUG_ON(has_children(item));
if (!item->sid) {
pr_err("A session leader of zombie process %d(%d) is outside of its pid namespace\n",
item->pid->real, vpid(item));
goto err;
}
if (dump_one_zombie(item, &pps_buf) < 0)
goto err;
}
ret = 0;
err:
if (pidns)
close_proc();
return ret;
}
static int dump_task_cgroup(struct parasite_ctl *parasite_ctl, const struct pstree_item *item)
{
struct parasite_dump_cgroup_args cgroup_args, *info;
int i;
BUILD_BUG_ON(sizeof(cgroup_args) < PARASITE_ARG_SIZE_MIN);
for (i = 0; i < item->nr_threads; i++) {
CoreEntry *core = item->core[i];
/* Leader is already dumped */
if (item->pid->real == item->threads[i].real)
continue;
/* For now, we only need to dump the root task's cgroup ns, because we
* know all the tasks are in the same cgroup namespace because we don't
* allow nesting.
*/
info = NULL;
if (item->ids->has_cgroup_ns_id && !item->parent) {
info = &cgroup_args;
sprintf(cgroup_args.thread_cgrp, "self/task/%d/cgroup", item->threads[i].ns[0].virt);
if (parasite_dump_cgroup(parasite_ctl, &cgroup_args))
return -1;
}
core->thread_core->has_cg_set = true;
if (dump_thread_cgroup(item, &core->thread_core->cg_set, info, i))
return -1;
}
return 0;
}
static int pre_dump_one_task(struct pstree_item *item, InventoryEntry *parent_ie)
{
pid_t pid = item->pid->real;
struct vm_area_list vmas;
struct parasite_ctl *parasite_ctl;
int ret = -1;
struct parasite_dump_misc misc;
struct mem_dump_ctl mdc;
vm_area_list_init(&vmas);
pr_info("========================================\n");
pr_info("Pre-dumping task (pid: %d comm: %s)\n", pid, __task_comm_info(pid));
pr_info("========================================\n");
/*
* Add pidfd of task to pidfd_store if it is initialized.
* This pidfd will be used in the next pre-dump/dump iteration
* in detect_pid_reuse().
*/
ret = pidfd_store_add(pid);
if (ret)
goto err;
if (item->pid->state == TASK_STOPPED) {
pr_warn("Stopped tasks are not supported\n");
return 0;
}
if (item->pid->state == TASK_DEAD)
return 0;
ret = collect_mappings(pid, &vmas, NULL);
if (ret) {
pr_err("Collect mappings (pid: %d) failed with %d\n", pid, ret);
goto err;
}
ret = -1;
parasite_ctl = parasite_infect_seized(pid, item, &vmas);
if (!parasite_ctl) {
pr_err("Can't infect (pid: %d) with parasite\n", pid);
goto err_free;
}
ret = parasite_fixup_vdso(parasite_ctl, pid, &vmas);
if (ret) {
pr_err("Can't fixup vdso VMAs (pid: %d)\n", pid);
goto err_cure;
}
ret = parasite_dump_misc_seized(parasite_ctl, &misc);
if (ret) {
pr_err("Can't dump misc (pid: %d)\n", pid);
goto err_cure;
}
ret = predump_task_files(pid);
if (ret) {
pr_err("Pre-dumping files failed (pid: %d)\n", pid);
goto err_cure;
}
item->pid->ns[0].virt = misc.pid;
mdc.pre_dump = true;
mdc.lazy = false;
mdc.stat = NULL;
mdc.parent_ie = parent_ie;
ret = parasite_dump_pages_seized(item, &vmas, &mdc, parasite_ctl);
if (ret)
goto err_cure;
if (compel_cure_remote(parasite_ctl))
pr_err("Can't cure (pid: %d) from parasite\n", pid);
err_free:
free_mappings(&vmas);
err:
return ret;
err_cure:
if (compel_cure(parasite_ctl))
pr_err("Can't cure (pid: %d) from parasite\n", pid);
goto err_free;
}
static int dump_one_task(struct pstree_item *item, InventoryEntry *parent_ie)
{
pid_t pid = item->pid->real;
struct vm_area_list vmas;
struct parasite_ctl *parasite_ctl;
int ret, exit_code = -1;
struct parasite_dump_misc misc;
struct cr_imgset *cr_imgset = NULL;
struct parasite_drain_fd *dfds = NULL;
struct proc_posix_timers_stat proc_args;
struct mem_dump_ctl mdc;
vm_area_list_init(&vmas);
pr_info("========================================\n");
pr_info("Dumping task (pid: %d comm: %s)\n", pid, __task_comm_info(pid));
pr_info("========================================\n");
if (item->pid->state == TASK_DEAD)
/*
* zombies are dumped separately in dump_zombies()
*/
return 0;
pr_info("Obtaining task stat ... \n");
ret = parse_pid_stat(pid, &pps_buf);
if (ret < 0)
goto err;
ret = collect_mappings(pid, &vmas, dump_filemap);
if (ret) {
pr_err("Collect mappings (pid: %d) failed with %d\n", pid, ret);
goto err;
}
if (!shared_fdtable(item)) {
dfds = xmalloc(sizeof(*dfds));
if (!dfds)
goto err;
ret = collect_fds(pid, &dfds);
if (ret) {
pr_err("Collect fds (pid: %d) failed with %d\n", pid, ret);
goto err;
}
parasite_ensure_args_size(drain_fds_size(dfds));
}
ret = parse_posix_timers(pid, &proc_args);
if (ret < 0) {
pr_err("Can't read posix timers file (pid: %d)\n", pid);
goto err;
}
parasite_ensure_args_size(posix_timers_dump_size(proc_args.timer_n));
ret = dump_task_signals(pid, item);
if (ret) {
pr_err("Dump %d signals failed %d\n", pid, ret);
goto err;
}
ret = dump_task_rseq(pid, item);
if (ret) {
pr_err("Dump %d rseq failed %d\n", pid, ret);
goto err;
}
parasite_ctl = parasite_infect_seized(pid, item, &vmas);
if (!parasite_ctl) {
pr_err("Can't infect (pid: %d) with parasite\n", pid);
goto err;
}
ret = fixup_thread_rseq(item, 0);
if (ret) {
pr_err("Fixup rseq for %d failed %d\n", pid, ret);
goto err;
}
if (fault_injected(FI_DUMP_EARLY)) {
pr_info("fault: CRIU sudden detach\n");
kill(getpid(), SIGKILL);
}
if (root_ns_mask & CLONE_NEWPID && root_item == item) {
int pfd;
pfd = parasite_get_proc_fd_seized(parasite_ctl);
if (pfd < 0) {
pr_err("Can't get proc fd (pid: %d)\n", pid);
goto err_cure;
}
if (install_service_fd(CR_PROC_FD_OFF, pfd) < 0)
goto err_cure;
}
ret = parasite_fixup_vdso(parasite_ctl, pid, &vmas);
if (ret) {
pr_err("Can't fixup vdso VMAs (pid: %d)\n", pid);
goto err_cure;
}
ret = parasite_collect_aios(parasite_ctl, &vmas); /* FIXME -- merge with above */
if (ret) {
pr_err("Failed to check aio rings (pid: %d)\n", pid);
goto err_cure;
}
ret = parasite_dump_misc_seized(parasite_ctl, &misc);
if (ret) {
pr_err("Can't dump misc (pid: %d)\n", pid);
goto err_cure;
}
item->pid->ns[0].virt = misc.pid;
pstree_insert_pid(item->pid);
item->sid = misc.sid;
item->pgid = misc.pgid;
pr_info("sid=%d pgid=%d pid=%d\n", item->sid, item->pgid, vpid(item));
if (item->sid == 0) {
pr_err("A session leader of %d(%d) is outside of its pid namespace\n", item->pid->real, vpid(item));
goto err_cure;
}
cr_imgset = cr_task_imgset_open(vpid(item), O_DUMP);
if (!cr_imgset)
goto err_cure;
ret = dump_task_ids(item, cr_imgset);
if (ret) {
pr_err("Dump ids (pid: %d) failed with %d\n", pid, ret);
goto err_cure;
}
if (dfds) {
ret = dump_task_files_seized(parasite_ctl, item, dfds);
if (ret) {
pr_err("Dump files (pid: %d) failed with %d\n", pid, ret);
goto err_cure;
}
ret = flush_eventpoll_dinfo_queue();
if (ret) {
pr_err("Dump eventpoll (pid: %d) failed with %d\n", pid, ret);
goto err_cure;
}
}
mdc.pre_dump = false;
mdc.lazy = opts.lazy_pages;
mdc.stat = &pps_buf;
mdc.parent_ie = parent_ie;
ret = parasite_dump_pages_seized(item, &vmas, &mdc, parasite_ctl);
if (ret)
goto err_cure;
ret = parasite_dump_sigacts_seized(parasite_ctl, item);
if (ret) {
pr_err("Can't dump sigactions (pid: %d) with parasite\n", pid);
goto err_cure;
}
ret = parasite_dump_itimers_seized(parasite_ctl, item);
if (ret) {
pr_err("Can't dump itimers (pid: %d)\n", pid);
goto err_cure;
}
ret = parasite_dump_posix_timers_seized(&proc_args, parasite_ctl, item);
if (ret) {
pr_err("Can't dump posix timers (pid: %d)\n", pid);
goto err_cure;
}
ret = dump_task_core_all(parasite_ctl, item, &pps_buf, cr_imgset, &misc);
if (ret) {
pr_err("Dump core (pid: %d) failed with %d\n", pid, ret);
goto err_cure;
}
ret = dump_task_cgroup(parasite_ctl, item);
if (ret) {
pr_err("Dump cgroup of threads in process (pid: %d) failed with %d\n", pid, ret);
goto err_cure;
}
ret = compel_stop_daemon(parasite_ctl);
if (ret) {
pr_err("Can't stop daemon in parasite (pid: %d)\n", pid);
goto err_cure;
}
ret = dump_task_threads(parasite_ctl, item);
if (ret) {
pr_err("Can't dump threads\n");
goto err_cure;
}
/*
* On failure local map will be cured in cr_dump_finish()
* for lazy pages.
*/
if (opts.lazy_pages)
ret = compel_cure_remote(parasite_ctl);
else
ret = compel_cure(parasite_ctl);
if (ret) {
pr_err("Can't cure (pid: %d) from parasite\n", pid);
goto err;
}
ret = dump_task_mm(pid, &pps_buf, &misc, &vmas, cr_imgset);
if (ret) {
pr_err("Dump mappings (pid: %d) failed with %d\n", pid, ret);
goto err;
}
ret = dump_task_fs(pid, &misc, cr_imgset);
if (ret) {
pr_err("Dump fs (pid: %d) failed with %d\n", pid, ret);
goto err;
}
exit_code = 0;
err:
close_cr_imgset(&cr_imgset);
close_pid_proc();
free_mappings(&vmas);
xfree(dfds);
return exit_code;
err_cure:
ret = compel_cure(parasite_ctl);
if (ret)
pr_err("Can't cure (pid: %d) from parasite\n", pid);
goto err;
}
static int alarm_attempts = 0;
bool alarm_timeouted(void)
{
return alarm_attempts > 0;
}
static void alarm_handler(int signo)
{
pr_err("Timeout reached. Try to interrupt: %d\n", alarm_attempts);
if (alarm_attempts++ < 5) {
alarm(1);
/* A current syscall will be exited with EINTR */
return;
}
pr_err("FATAL: Unable to interrupt the current operation\n");
BUG();
}
static int setup_alarm_handler(void)
{
struct sigaction sa = {
.sa_handler = alarm_handler, .sa_flags = 0, /* Don't restart syscalls */
};
sigemptyset(&sa.sa_mask);
sigaddset(&sa.sa_mask, SIGALRM);
if (sigaction(SIGALRM, &sa, NULL)) {
pr_perror("Unable to setup SIGALRM handler");
return -1;
}
return 0;
}
static int cr_pre_dump_finish(int status)
{
InventoryEntry he = INVENTORY_ENTRY__INIT;
struct pstree_item *item;
int ret;
/*
* Restore registers for tasks only. The threads have not been
* infected. Therefore, the thread register sets have not been changed.
*/
ret = arch_set_thread_regs(root_item, false);
if (ret)
goto err;
ret = inventory_save_uptime(&he);
if (ret)
goto err;
he.has_pre_dump_mode = true;
he.pre_dump_mode = opts.pre_dump_mode;
pstree_switch_state(root_item, TASK_ALIVE);
timing_stop(TIME_FROZEN);
if (status < 0) {
ret = status;
goto err;
}
pr_info("Pre-dumping tasks' memory\n");
for_each_pstree_item(item) {
struct parasite_ctl *ctl = dmpi(item)->parasite_ctl;
struct page_pipe *mem_pp;
struct page_xfer xfer;
if (!ctl)
continue;
pr_info("\tPre-dumping %d\n", vpid(item));
timing_start(TIME_MEMWRITE);
ret = open_page_xfer(&xfer, CR_FD_PAGEMAP, vpid(item));
if (ret < 0)
goto err;
mem_pp = dmpi(item)->mem_pp;
if (opts.pre_dump_mode == PRE_DUMP_READ) {
timing_stop(TIME_MEMWRITE);
ret = page_xfer_predump_pages(item->pid->real, &xfer, mem_pp);
} else {
ret = page_xfer_dump_pages(&xfer, mem_pp);
}
xfer.close(&xfer);
if (ret)
goto err;
timing_stop(TIME_MEMWRITE);
destroy_page_pipe(mem_pp);
if (compel_cure_local(ctl))
pr_err("Can't cure local: something happened with mapping?\n");
}
free_pstree(root_item);
seccomp_free_entries();
if (irmap_predump_run()) {
ret = -1;
goto err;
}
err:
if (unsuspend_lsm())
ret = -1;
if (disconnect_from_page_server())
ret = -1;
if (bfd_flush_images())
ret = -1;
if (write_img_inventory(&he))
ret = -1;
if (ret)
pr_err("Pre-dumping FAILED.\n");
else {
write_stats(DUMP_STATS);
pr_info("Pre-dumping finished successfully\n");
}
return ret;
}
int cr_pre_dump_tasks(pid_t pid)
{
InventoryEntry *parent_ie = NULL;
struct pstree_item *item;
int ret = -1;
/*
* We might need a lot of pipes to fetch huge number of pages to dump.
*/
rlimit_unlimit_nofile();
root_item = alloc_pstree_item();
if (!root_item)
goto err;
root_item->pid->real = pid;
if (!opts.track_mem) {
pr_info("Enforcing memory tracking for pre-dump.\n");
opts.track_mem = true;
}
if (opts.final_state == TASK_DEAD) {
pr_info("Enforcing tasks run after pre-dump.\n");
opts.final_state = TASK_ALIVE;
}
if (init_stats(DUMP_STATS))
goto err;
if (cr_plugin_init(CR_PLUGIN_STAGE__PRE_DUMP))
goto err;
if (lsm_check_opts())
goto err;
if (irmap_load_cache())
goto err;
if (cpu_init())
goto err;
if (vdso_init_dump())
goto err;
if (connect_to_page_server_to_send() < 0)
goto err;
if (setup_alarm_handler())
goto err;
if (collect_pstree())
goto err;
if (collect_pstree_ids_predump())
goto err;
if (collect_namespaces(false) < 0)
goto err;
if (collect_and_suspend_lsm() < 0)
goto err;
/* Errors handled later in detect_pid_reuse */
parent_ie = get_parent_inventory();
for_each_pstree_item(item)
if (pre_dump_one_task(item, parent_ie))
goto err;
if (parent_ie) {
inventory_entry__free_unpacked(parent_ie, NULL);
parent_ie = NULL;
}
ret = cr_dump_shmem();
if (ret)
goto err;
if (irmap_predump_prep())
goto err;
ret = 0;
err:
if (parent_ie)
inventory_entry__free_unpacked(parent_ie, NULL);
return cr_pre_dump_finish(ret);
}
static int cr_lazy_mem_dump(void)
{
struct pstree_item *item;
int ret = 0;
pr_info("Starting lazy pages server\n");
ret = cr_page_server(false, true, -1);
for_each_pstree_item(item) {
if (item->pid->state != TASK_DEAD) {
destroy_page_pipe(dmpi(item)->mem_pp);
if (compel_cure_local(dmpi(item)->parasite_ctl))
pr_err("Can't cure local: something happened with mapping?\n");
}
}
if (ret)
pr_err("Lazy pages transfer FAILED.\n");
else
pr_info("Lazy pages transfer finished successfully\n");
return ret;
}
static int cr_dump_finish(int ret)
{
int post_dump_ret = 0;
if (disconnect_from_page_server())
ret = -1;
close_cr_imgset(&glob_imgset);
if (bfd_flush_images())
ret = -1;
cgp_fini();
if (!ret) {
/*
* It might be a migration case, where we're asked
* to dump everything, then some script transfer
* image on a new node and we're supposed to kill
* dumpee because it continue running somewhere
* else.
*
* Thus ask user via script if we're to break
* checkpoint.
*/
post_dump_ret = run_scripts(ACT_POST_DUMP);
if (post_dump_ret) {
post_dump_ret = WEXITSTATUS(post_dump_ret);
pr_info("Post dump script passed with %d\n", post_dump_ret);
}
}
/*
* Dump is complete at this stage. To choose what
* to do next we need to consider the following
* scenarios
*
* - error happened during checkpoint: just clean up
* everything and continue execution of the dumpee;
*
* - dump succeeded but post-dump script returned
* some ret code: same as in previous scenario --
* just clean up everything and continue execution,
* we will return script ret code back to criu caller
* and it's up to a caller what to do with running instance
* of the dumpee -- either kill it, or continue running;
*
* - dump succeeded but -R option passed, pointing that
* we're asked to continue execution of the dumpee. It's
* assumed that a user will use post-dump script to keep
* consistency of the FS and other resources, we simply
* start rollback procedure and cleanup everything.
*/
if (ret || post_dump_ret || opts.final_state == TASK_ALIVE) {
unsuspend_lsm();
network_unlock();
delete_link_remaps();
clean_cr_time_mounts();
}
if (!ret && opts.lazy_pages)
ret = cr_lazy_mem_dump();
if (arch_set_thread_regs(root_item, true) < 0)
return -1;
cr_plugin_fini(CR_PLUGIN_STAGE__DUMP, ret);
pstree_switch_state(root_item, (ret || post_dump_ret) ? TASK_ALIVE : opts.final_state);
timing_stop(TIME_FROZEN);
free_pstree(root_item);
seccomp_free_entries();
free_file_locks();
free_link_remaps();
free_aufs_branches();
free_userns_maps();
close_service_fd(CR_PROC_FD_OFF);
close_image_dir();
if (ret || post_dump_ret) {
if (fault_injected(FI_DUMP_CRASH)) {
pr_info("fault: CRIU dump crashed!\n");
abort();
}
pr_err("Dumping FAILED.\n");
} else {
write_stats(DUMP_STATS);
pr_info("Dumping finished successfully\n");
}
return post_dump_ret ?: (ret != 0);
}
int cr_dump_tasks(pid_t pid)
{
InventoryEntry he = INVENTORY_ENTRY__INIT;
InventoryEntry *parent_ie = NULL;
struct pstree_item *item;
int pre_dump_ret = 0;
int ret = -1;
kerndat_warn_about_madv_guards();
pr_info("========================================\n");
pr_info("Dumping processes (pid: %d comm: %s)\n", pid, __task_comm_info(pid));
pr_info("========================================\n");
/*
* We will fetch all file descriptors for each task, their number can
* be bigger than a default file limit, so we need to raise it to the
* maximum.
*/
rlimit_unlimit_nofile();
root_item = alloc_pstree_item();
if (!root_item)
goto err;
root_item->pid->real = pid;
pre_dump_ret = run_scripts(ACT_PRE_DUMP);
if (pre_dump_ret != 0) {
pr_err("Pre dump script failed with %d!\n", pre_dump_ret);
goto err;
}
if (init_stats(DUMP_STATS))
goto err;
if (cr_plugin_init(CR_PLUGIN_STAGE__DUMP))
goto err;
if (lsm_check_opts())
goto err;
if (irmap_load_cache())
goto err;
if (cpu_init())
goto err;
if (vdso_init_dump())
goto err;
if (cgp_init(opts.cgroup_props, opts.cgroup_props ? strlen(opts.cgroup_props) : 0, opts.cgroup_props_file))
goto err;
if (parse_cg_info())
goto err;
if (prepare_inventory(&he))
goto err;
if (opts.cpu_cap & CPU_CAP_IMAGE) {
if (cpu_dump_cpuinfo())
goto err;
}
if (connect_to_page_server_to_send() < 0)
goto err;
if (setup_alarm_handler())
goto err;
/*
* The collect_pstree will also stop (PTRACE_SEIZE) the tasks
* thus ensuring that they don't modify anything we collect
* afterwards.
*/
if (collect_pstree())
goto err;
if (checkpoint_devices())
goto err;
if (collect_pstree_ids())
goto err;
if (network_lock())
goto err;
if (rpc_query_external_files())
goto err;
if (collect_file_locks())
goto err;
if (collect_namespaces(true) < 0)
goto err;
glob_imgset = cr_glob_imgset_open(O_DUMP);
if (!glob_imgset)
goto err;
if (seccomp_collect_dump_filters() < 0)
goto err;
/* Errors handled later in detect_pid_reuse */
parent_ie = get_parent_inventory();
if (collect_and_suspend_lsm() < 0)
goto err;
for_each_pstree_item(item) {
if (dump_one_task(item, parent_ie))
goto err;
}
ret = run_plugins(DUMP_DEVICES_LATE, pid);
if (ret && ret != -ENOTSUP)
goto err;
if (parent_ie) {
inventory_entry__free_unpacked(parent_ie, NULL);
parent_ie = NULL;
}
/*
* It may happen that a process has completed but its files in
* /proc/PID/ are still open by another process. If the PID has been
* given to some newer thread since then, we may be unable to dump
* all this.
*/
if (dead_pid_conflict())
goto err;
/* MNT namespaces are dumped after files to save remapped links */
if (dump_mnt_namespaces() < 0)
goto err;
if (dump_file_locks())
goto err;
if (dump_verify_tty_sids())
goto err;
if (dump_zombies())
goto err;
if (dump_pstree(root_item))
goto err;
/*
* TODO: cr_dump_shmem has to be called before dump_namespaces(),
* because page_ids is a global variable and it is used to dump
* ipc shared memory, but an ipc namespace is dumped in a child
* process.
*/
ret = cr_dump_shmem();
if (ret)
goto err;
if (root_ns_mask) {
ret = dump_namespaces(root_item, root_ns_mask);
if (ret)
goto err;
}
if ((root_ns_mask & CLONE_NEWTIME) == 0) {
ret = dump_time_ns(0);
if (ret)
goto err;
}
if (dump_aa_namespaces() < 0)
goto err;
ret = dump_cgroups();
if (ret)
goto err;
ret = fix_external_unix_sockets();
if (ret)
goto err;
ret = tty_post_actions();
if (ret)
goto err;
ret = inventory_save_uptime(&he);
if (ret)
goto err;
he.has_pre_dump_mode = false;
if (found_uprobes_vma()) {
he.has_allow_uprobes = true;
he.allow_uprobes = true;
}
ret = write_img_inventory(&he);
if (ret)
goto err;
err:
if (parent_ie)
inventory_entry__free_unpacked(parent_ie, NULL);
return cr_dump_finish(ret);
}